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Abstract

This thesis studies projection algorithms in optimization which have frequent applications in data

science (e.g., image processing). Contributions in this thesis include proposing and analyzing novel

iterative projection methods for the linear feasibility problem, and providing a worst-case analysis of

Wolfe’s combinatorial method for the minimum norm point problem. We further strengthen results

connecting the linear feasibility and minimum norm point problems. In an appendix, we include

MATLAB code for all methods described in this thesis.

Chapter 2 deals with both new and classical iterative projection methods for linear feasibility

problems. We provide an accelerated convergence analysis of Motzkin’s method on systems of

linear equations which is governed by the dynamic range of the residual of the system. We give a

probabilistic analysis of new randomized Kaczmarz methods for detecting corruption in systems of

linear equations where the number of corruptions is small compared to the number of rows of the

system. Finally, we propose a new, generalized family of algorithms that includes Motzkin’s methods

and the randomized Kaczmarz methods, the Sampling Kaczmarz-Motzkin methods. We provide an

analysis of their convergence, prove they detect feasibility of the linear feasibility problems they

solve, and show that these methods even terminate in a finite number of steps in special cases. We

include ample experimental evidence comparing these methods to competing methods.

Chapter 3 studies Wolfe’s methods for the minimum norm point problem. The complexity of

Philip Wolfe’s method for the minimum Euclidean-norm point problem over a convex polytope has

remained unknown since he proposed the method in 1974. The method is important because it is

used as a subroutine for one of the most practical algorithms for submodular function minimization

(a topic with remarkable applications in machine learning). We discuss Wolfe’s methods in detail,

including discussing variations of the original method, and present several interesting examples of

-x-



polytopes on which Wolfe’s methods exhibit differing behavior. We present the first example that

Wolfe’s method can take exponential time.

Chapter 4 presents results regarding the complexity of the linear feasibility and minimum norm point

problems, and connects the two problems. We discuss the complexity of the minimum norm vertex

problem over convex polytopes, a problem which is related to the minimum norm point problem but

illustrates the potential difference in complexity between seemingly similar computational problems.

Finally, we demonstrate that the linear feasibility problem reduces to the minimum norm point

problem in strongly-polynomial time. We conclude the thesis with some final remarks and discussion

of future work.
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CHAPTER 1

Introduction

Broadly speaking, the mathematical concept of projection deals with operators which minimize

distances or norms. This broad class of operators encompasses many algorithms used in data science

and optimization. This thesis deals with such projection algorithms and their applications. This

chapter gives a summary of the entire thesis.

1.1. Background

Throughout this thesis, we study operators, PK , which map from a normed linear space, X, into a

subset, K, of X and minimize a norm on X. We call these set-valued functions projections onto

K in ‖ · ‖. The study of such operators is of interest in the case of infinite-dimensional Hilbert

spaces (e.g., [KKM09,KR12]), although this will not be the focus of this thesis. Throughout this

thesis, we discuss only operators which act on the normed linear space Rn and in later sections will

further focus on those which minimize the Euclidean-norm. We begin with some common definitions

and basic results on projections, convex analysis in Rn, and optimization that we will refer to for

the following sections and chapters; see [Sch86,BV04,Lay82,Zie12,Bar02,HN01,CLO07] for

resources.

Definition 1.1.1. A projection onto or into K is an operator PK : Rn → K ⊆ Rn which is defined

as PK(x) = argminy∈K‖y − x‖ where ‖ · ‖ denotes a norm on Rn.

Some authors define a projection as a linear map on a linear space, P : X → X, which satisfies

P2 = P [HN01]. Note that we have relaxed the requirement that PK be a linear operator. See

Figure 1.1 for an example of the nonlinear behavior of norm minimization.

If the norm is an `p norm, we denote the projection operator as the `p-projection onto K. Geometri-

cally, the `p-projection of the point x onto K may be interpreted as the first point(s) of intersection
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K

0

x

y

x + y

PK(x)

PK(y)

PK(x + y)

Figure 1.1. An example of the nonlinear behavior of `2-projection onto a sphere,
PK . Here x = (0, 2), y = (2, 0), and K is the unit circle. Note that PK(x + y) 6=
PK(x) + PK(y).

K

x

PK(x)
Kx

PK(x)

PK(x)

Figure 1.2. Left: `2-projection of x onto K; right: `1-projection of x onto K.

of the α-scaling of the `p-norm ball centered at x, {y : ‖y−x‖p = α}, with the set K as α increases.

Examples of this intuition are included in Figure 1.2.

As Figure 1.2 suggests, the projection onto K may contain multiple points if the set K is non-convex.

The contrapositive is true if the norm is defined by the inner product on Rn (i.e., the `2-norm); if

K is convex then PK(x) for ‖ · ‖2 is unique if nonempty.
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Note that our definition of projection satisfies P2
K = PK , since if PK(x) is nonempty then PK(x) ⊂ K

so PK(PK(x)) = PK(x) for all x ∈ Rn. This simple fact about projections demonstrates one

connection between fixed point theory and optimization. Many of the iterative methods used in

optimization define iterates via a projection operator precisely because the underlying problem is

solved by a fixed point, PK(y) = y; see [Aub93,Tod13,RT17,MGC11,HYZ08] and references

therein for resources. Each of the algorithms analyzed in this thesis may be seen as fixed point

operators. Each of the methods discussed in Chapter 2 may be considered instances of the following

simple fixed-point operator which computes a point, x, in the intersection of closed, convex sets,

Ki 6= ∅ for i = 1, 2, ...,m; that is, x ∈ ∩mi=1Ki. Define Ix to be the indices of sets in which x does

not lie, Ix := {j : x 6∈ Kj} ⊆ {1, 2, ...,m}, and let PKi(x) be the `2-projection operator onto Ki.

Define the fixed-point operator

(1.1) T (x) =


PKi(x) where i ∈ Ix if Ix 6= ∅

x otherwise.

The following proposition demonstrates that fixed points of the operator T are points in the feasible

region, x ∈ ∩mi=1Ki.

Proposition 1.1.2. A point is feasible, x ∈ ∩mi=1Ki, if and only if it is a fixed point of T (defined

in (1.1)), x = T (x).

Proof. Note that x ∈ ∩mi=1Ki if and only if Ix = ∅. Finally, Ix = ∅ if and only if T (x) = x. �

The concept of projection is well-defined for all nonempty sets K and norms. However, the sets K

onto which projection in a given norm may be explicitly computed are far more restricted. Even for

simple sets, projection in norms (other than the `2-norm) are rarely computable by a closed formula.

Additionally, `p-norm minimization over even simple sets is NP-hard for 0 ≤ p < 1 (see [GJY11]

and the references therein), while for p ≥ 1, the convexity of the norm allows for polynomial time

approximation (or exact computation for p = 1 and p = 2). Throughout the rest of this thesis, ‖ · ‖

denotes the `2-norm and other norms will be explicitly noted.
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We will denote the Euclidean distance of a point x to a set K to be

d(x,K) := inf
y∈K
‖x− y‖

where inf denotes the infimum. If the set K is empty, we consider d(x,K) =∞. Note that when

the projection of x onto K exists, it achieves this minimal distance to x. While the concept of

projection is well-defined, it is also possible for the projection onto a set K to be empty (as no

point in K achieves the infimal distance to x); consider any nonempty, open set K and x 6∈ K and

note that for any y ∈ K there exists z ∈ K so that ‖z− x‖ < ‖y − x‖. It is likewise possible for

d(x,K) = 0 with x 6∈ K; consider the previous situation with x ∈ K where K denotes the closure

of K and note that d(x,K) = 0. Additionally, we consider the distance between two sets to be the

infimal distance between points of each set,

d(S,K) := inf
x∈S

d(x,K)

where if S is empty this distance is defined to be d(S,K) = ∞. Note that it is possible for two

nonempty, closed, convex sets S,K with S ∩ K = ∅ to have d(S,K) = 0, but if at least one is

compact then this distance must be nonzero.

We begin with one of the simplest examples of projection, the `2-projection onto an affine subspace

of dimension n− 1. An affine subspace of dimension n− 1 is defined by an equation aTi x = bi and

is a hyperplane, Hai,bi := {x : aTi x = bi}. The projection of an arbitrary point x onto Hai,bi is easily

computable, given by the closed formula

(1.2) PHai,bi
(x) = x +

bi − aTi x

‖ai‖2
ai.

Note that this computation requires only O(n) algebraic operations. The projection moves x parallel

to the vector normal to the hyperplane, ai, with displacement given by the norm of the second term

of the right hand side of (1.2). See Figure 1.3 for an example of a projection of x into the hyperplane

Hai,bi . One important fact about this computation is that if all data (x,ai, bi) are rational then

PHai,bi
(x) will be rational.
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x

ai

H≤ai,bi

P
H≤ai,bi

(x)

A

B C

D

b

c

d

y = P
H

≤
ai,bi

(y)

Figure 1.3. Left: a visualization of `2-projection into a hyperplane in three dimen-
sions; Right: a visualization of `2-projection into a halfspace in two dimensions.

This formula generalizes to `2-projection onto a halfspace, the solution set of a linear inequality,

H≤ai,bi := {x : aTi x ≤ bi}. The `2-projection of an arbitrary point x into H≤ai,bi is given by

(1.3) P
H≤ai,bi

(x) = x− (aTi x− bi)+

‖ai‖2
ai

where (α)+ = max(0, α). Again, this computation requiresO(n) algebraic operations. The projection

moves x parallel to the vector normal to boundary hyperplane Hai,bi , ai, with displacement given

by the norm of the second term of the right hand side of (1.3). See Figure 1.3 for an example of

projections of x and y into the halfspace H≤ai,bi . Again, we point out that if x, ai and bi are rational,

then P
H≤ai,bi

(x) is rational.

Another simple case for projection computation is that of `2-projection onto a sphere of radius α

about y, S(y, α) := {x : ‖x− y‖ = α}. The projection of x 6= y onto the sphere of radius α around

y is given by

(1.4) PS(y,α)(x) := y +
α(x− y)

‖x− y‖
.

Figure 1.4 is a visualization of an `2-projection onto a sphere in three dimensions. Note that this

computation requires O(n) algebraic operations. However, note that the presence of ‖x − y‖ in
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Figure 1.4. The `2-projection of x onto the sphere of radius α around y in three
dimensions.

the formula for PS(y,α)(x) means that even if y, x and α are rational, PS(y,α)(x) may be irrational;

consider the projection of (1, 1) onto the unit circle in R2.

As both the hyperplane and halfspace are convex, the `2-projection of any point onto either is

unique. However, note that the sphere S(y, α) is not convex and that there is precisely one point

where PS(y,α)(x) is non-unique, the center of the sphere. The `2-projection of y onto the sphere is

non-unique, PS(y,α)(y) = S(y, α). Not only is this `2-projection non-unique, it contains infinitely

many points. If the non-convex set K has boundary defined by finitely many linear equations

(hyperplanes) the `2-projection of a point may be non-unique but may contain only finitely many

points. Meanwhile, if the boundary of non-convex sets are described by polynomials of higher degree,

the projection may be infinite. Figure 1.5 contains an example set X where the projection of the

point x, PX(x), is infinite.

Note that each of the sets described above is the solution set to a polynomial equation or inequality

in n variables; in the case of the hyperplane and halfspace, the polynomial is a linear equation,

while in the case of the sphere, the polynomial is a quadratic polynomial. The set of solutions to

a system of polynomial equations in n variables is known as a real algebraic variety. The set X

in Figure 1.5 is a real algebraic variety (solution set of x2 + y2 = z in R3) and the circle PX(x) is
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Figure 1.5. An example of a variety, X, and point x where the `2-projection of x
onto X is infinite.

the projection of x onto X. Computing the `2-projection onto a real algebraic variety is in general

NP-hard; see [DHO+16] and references therein. Hyperplanes, halfspaces, and spheres are the only

sets we will discuss which have a closed formula for `2-projection. We now move on to sets which are

more complex than these three, but still less general than arbitrary real algebraic varieties.

Each of the problems and algorithms described in this thesis require projection onto polyhedra. A

polyhedron (plural polyhedra) is the set of solutions to a system of finitely many linear inequalities,

PA,b := {x : Ax ≤ b} where A ∈ Rm×n, b ∈ Rm. If x solves the system of linear inequalities,

Ax ≤ b, then it must solve each of the inequalities defined by the ith row of the matrix A and

the corresponding entry of b, aTi x ≤ bi. Here we denote the row vectors of A as aTi as we prefer

to think of ai as defining the normal of the hyperplane Hai,bi . As x satisfies aTi x ≤ bi, it resides

in H≤ai,bi . Thus, the polyhedron is the intersection of the halfspaces defined by the rows of A and

corresponding entries of b, PA,b = ∩mi=1H
≤
ai,bi

. See Figure 1.6 for two examples of polyhedra.

Recall the affine hull of a set of points is the set of linear combinations of the points where the

coefficients sum to one,

aff(p1,p2, ...,pm) := {x : x =
m∑
i=1

λipi,
m∑
i=1

λi = 1}.
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PA,b PA,b

Figure 1.6. Two examples of polyhedra in two dimensions. The lines represent the
boundary hyperplanes of the halfspaces which define the polyhedra.

Similarly, the convex hull of a set of points is the set of linear combinations of the points where the

coefficients are nonnegative and sum to one,

conv(p1,p2, ...,pm) := {x : x =
m∑
i=1

λipi,
m∑
i=1

λi = 1, λi ≥ 0}.

The cone of a set of points is the set of nonnegative linear combinations of the points,

cone(p1,p2, ...,pm) := {x : x =

m∑
i=1

λipi, λi ≥ 0}.

See Figure 1.7 for a visual example of these objects for five points. Recall that the relative interior

of a set S, relint(S), is the interior of S relative to aff(S).

The boundary of a polyhedron is made up of polyhedra of smaller dimension called faces. A face

is a set of points in the polyhedron which maximize a given linear objective. A facet is a face of

maximal dimension on the boundary of the polyhedron. In Figure 1.6 and Figure 1.8, the facets

of the polyhedra are the line segments on the boundary. If the polyhedron is full-dimensional

(aff(PA,b) = Rn), then the facets lie on the boundary hyperplanes of the halfspaces defining the

polyhedron. The linear objective which is maximized on these facets are the normals to the

hyperplanes on which they lie. More linear objectives are maximized on faces of lower dimension.

The set of linear objectives which are maximized on faces of lower dimension are precisely the

normal cones of the faces, the cones of the normals of the facets in which they are contained. See
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Figure 1.7. A visualization of the convex hull, affine hull, and cone of a set of five
points.

PA,b
a1

a2

a3

Figure 1.8. A polyhedron with the normal cones for each of its faces. Each cone
contains all linear objective functions which are maximized on that face.

Figure 1.8 for a visualization. The faces of dimension one are called edges and the faces of dimension

zero are called vertices.
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Figure 1.9. A 3-simplex in three dimensions.

As Figure 1.6 suggests, polyhedra may be bounded or unbounded. The famed Weyl-Minkowski

Theorem gives an additional mode for understanding bounded polyhedra. A bounded polyhedron is

both the intersection of finitely many halfspaces and the convex hull of finitely many points, and is

known as a polytope; see [Zie12] and references therein. The left image in Figure 1.6 is a polytope.

The halfspaces, if not redundant (unnecessary for defining the polytope), define the hyperplanes

which contain the facets of a full-dimensional polytope. Meanwhile, the extremal (unique maximum

of linear objective) points are vertices of the polytope. Polytopes which are given as the set of

solutions to a system of linear inequalities are called H-polytopes. Polytopes which are given as

the convex hull of a set of points are called V -polytopes. The complexity of testing equivalence of

a V -polytope and an H-polytope is not understood fully understood; see [FO85] for additional

information.

Recall that a d-simplex is the convex hull of any d+ 1 affinely independent points in Rn where n ≥ d.

A d-simplex has d+ 1 facets and thus may also be defined as the intersection of d+ 1 halfspaces in

Rd. Simplices are especially interesting in the theory of complexity of optimization as they have the

same number of vertices and facets, two objects often manipulated in optimization algorithms. See

Figure 1.9 for an example in three dimensions.

Note that the projection of a set S is defined as the set of all projections of points in the set;

PK(S) := {PK(x) : x ∈ S}. We will mainly be interested in projections of polyhedra into affine and

10
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linear subspaces. The `2-projection of a polyhedron into an affine subspace remains a polyhedron;

see [Zie12] for references.

For convenience, we now set some notation that we will maintain throughout the rest of this thesis.

As above, vectors will be denoted in boldface (e.g., a), matrices will be capitalized (e.g., A), and

scalars will be lower case English (usually subscripted) and Greek letters (e.g., bi and α). The

origin will be denoted 0 ∈ Rn and we will denote the all-ones vector as 1 = (1, 1, ..., 1)T ∈ Rn. We

use aTi ∈ Rn to represent the ith row of A ∈ Rm×n and ei ∈ Rk to represent the ith coordinate

vector in k-dimensional space. We will define the positive entries of a vector, v+, to be defined

entry-wise as (v+)i := (vi)
+. We define the absolute value of a vector |v| to be defined entry-wise

as |v|i := |vi|.

In this thesis, polyhedra will be given in two forms, either as the intersection of finitely many

halfspaces (H-polyhedra) or as the convex hull of finitely many points (V -polytopes). In halfspace

form, we will refer to the given set of inequalities whose solution set forms PA,b as Ax ≤ b

where A ∈ Rm×n and b ∈ Rm, unless otherwise noted. We will label polyhedra of this form by

PA,b. Likewise, in vertex form, we will refer to the given points whose convex hull forms P as

p1,p2, ...,pm ∈ Rn, unless otherwise noted. We will label polytopes of this form by P . For such

sets of points, we will be concerned with the projection of the origin onto P which is the point of

minimum norm in the convex hull,

PP (0) = argminx∈conv({pi}mi=1)‖x‖,

and which we will occasionally call the convex minimizer . Computing the convex minimizer of a set

of points is the minimum norm point problem discussed in Section 1.3. We will also be interested in

the affine minimizer ,

Paff({pi})(0) = argminx∈aff({pi}mi=1)‖x‖,

which is the projection of the origin (and the point of minimum norm) on the affine hull. Computing

the affine minimizer of a set of points only requires solving a system of linear equations; see Chapter

4, Lemma 4.1.1 for details.
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Many problems in optimization have polyhedral feasible regions. The feasible region of an optimiza-

tion problem is the set of points over which the objective function is optimized. Many results in the

theory of complexity of optimization require the size of data describing the polyhedron. We recall

the binary encoding length of a rational matrix, A = (aij/αij)
m,n
i=1,j=1 where aij , αij ∈ Z and αij 6= 0

is

σA := 2mn+
∑
i,j

dlog2(|aij |+ 1)e+ dlog2(|αij |+ 1)e,

and the length of the binary encoding of a rational vector b = (bi/βi)
m
i=1 where bi, βi ∈ Z and βi 6= 0,

is

σb := 2m+
∑
i

dlog2(|bij |+ 1)e+ dlog2(|βij |+ 1)e,

as in [Sch86,GLS88]. The binary encoding size of a system of inequalities and the corresponding

H-polyhedron is σA,b := σA + σb. The binary encoding size of a V -polytope given as the convex

hull of the points {p1,p2, ...,pm} is σP :=
∑m

i=1 σpi .

Note that the polyhedra and polytopes considered in this thesis reside in ambient space Rn (if the

dimension is fixed), unless otherwise noted. As we deal with lifts of polyhedra in Chapters 3 and

4, we will sometimes deal with polyhedra in Rd (this should indicate that the dimension may be

changing). Occasionally, we will be concerned with polyhedra which are given as the intersection of

finitely many hyperplanes, and we give them as the solution set for the system of linear equations

Ax = b where A ∈ Rm×n and b ∈ Rm are given data. We will label polyhedra of this form by P=
A,b.

As above, projection operators will be denoted by PK and minimize the Euclidean distance, unless

otherwise noted.

Our theoretical results will often deal with the matrices defining the polyhedra in question, A ∈ Rm×n.

Let [m] = {1, 2, ...,m} and let [A] refer to the set of indices of the rows of matrix A (i.e., for A ∈ Rm×n,

[A] = [m]). For I ⊂ [A], we let AI denote the submatrix of A of rows indexed by elements of I.

For D ⊂ [A], we let ADC := A[A]−D denote the submatrix of A whose rows are indexed by the

complement of D. Often our theoretical results will deal with the residual of an LF or a system of

linear equations, which is (Ax− b)+ or Ax− b, respectively.
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P

V1

F1

NP (V1)

NP (F1)

P

Figure 1.10. Left: A polytope P ; middle: the normal fan of P ; right: the normal
manifold of P .

We will often consider polyhedra defined by A,b where A is a random matrix. We call A a Gaussian

matrix if the entries of A are iid Gaussian random variables (aij ∼ N (0, 1)). We also discuss other

matrices where aij ∼ N (µ, σ2) for different mean and variance values, but we will define these in

the appropriate section. We also discuss normalized matrices by which we mean matrices that have

been row-normalized so that ‖ai‖ = 1 for i = 1, ...,m. A normalized Gaussian matrix is a matrix

that was of Gaussian construction (entries according to the standard normal distribution) before

being row-normalized.

One nice property of V - and H-polyhedra is that d(x, P ) = 0 if and only if x ∈ P even if the

polyhedron is unbounded. Note that the projection of any point onto a nonempty polyhedron is

well-defined and simple to describe; it is the projection of that point onto the nearest face of the

polyhedron; in particular, d(x, P ) = minF face of P d(x, F ). The `2-projection of any point onto any

polyhedron is unique. Note that the projection may lay on any face of P . In fact, the normal fan

of a polytope P partitions Rn into sets of points which project onto each face; see [Zie12] and

references therein. The normal fan is the collection of the normal cones of the faces of the polytope.

For every face F of P , the set of points whose projection lies in relint(F ) is relint(F ) +NP (F ) where

NP (F ) is the normal cone of P on the face F . This partition of Rn is often denoted the normal

manifold . See Figure 1.10 for an example.
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x

pi0

pi1

pi2

Figure 1.11. An example of Carathéodory’s theorem applied to a set of points.

Another nice property of polytopes is that the points in them may be expressed as a convex

combination of no more than n+ 1 points, even if the polytope itself is the convex hull of m� n+ 1

points. This fact is Carathéodory’s theorem. See Figure 1.11 for an example.

Theorem 1.1.3 (Carathéodory’s theorem). The point x ∈ conv(p1,p2, ...,pm) for pi ∈ Rn if and

only if x ∈ conv(pi0 ,pi1 , ...,pin) for some subset of n+ 1 points {pi0 ,pi1 , ...,pin} ⊆ {p1,p2, ...,pm}.

This fact translates into potential algorithmic efficiency in polytope membership questions. If one

knows which vertices, pik , express the point in question, one may discard the extra vertices allowing

for a simpler computation. This fact also allows for triangulation of polytopes, which is an entire

body of theory and algorithmic questions we will not explore in this thesis; see [DLRS10] for more

information.

As mentioned above, we are motivated to study projections because problems and algorithms

formulated as projections onto polyhedra are ubiquitous throughout optimization, analysis, machine

learning, statistics, and data and computer science. Examples of the exciting areas where projections

arise include compressed sensing, linear programming, regression, and combinatorial optimization;

we will see examples from these areas in Sections 1.2 and 1.3. The vast mathematical theory

regarding projections have enabled the development of provably efficient methods for problems

spanning these fields. We now discuss the two motivating uses of projections in this thesis; iterative

projection methods, methods which iteratively project onto polyhedra to solve an optimization
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Figure 1.12. Examples of iterative projection methods which approximately com-
pute a point in ∩Ki.

problem, and projection problems, optimization problems which are naturally formulated as the

problem of computing a projection onto a polyhedron.

Most optimization problems, minx∈Rn f(x) subject to g(x) ≤ 0, h(x) = 0, are solved or approx-

imately solved with iterative methods of the form xk+1 = xk + µkT (xk). Here, T (xk) is an

improving direction that decreases the objective function, f(x), while (possibly) preserving feasibil-

ity, g(x) ≤ 0, h(x) = 0. The steepest (or gradient) descent method, the stochastic gradient method,

Newton’s method, the Simplex method, and interior-point methods all fall into this category of

optimization procedures; see [BV04,Sch86,SNW12] for more information. In many cases, the

optimization problem may be reformulated as an equivalent feasibility problem, find x ∈ ∩ni=1Ki

where Ki are (possibly convex) sets encoding the original problem. In this case, the step µkT (xk),

projects xk iteratively into a (convex) set, Ki, and is given by PKi(xk). These types of methods are

known as iterative projection methods. See Figure 1.12 for an example.

Furthermore, many problems in data science and machine learning are expressly formulated as

projection problems, min ‖x‖a subject to g(x) ≤ 0, h(x) = 0. This problem is to compute the

projection of 0 in norm ‖ · ‖a onto the feasible region, {x|g(x) ≤ 0, h(x) = 0}. See Figure 1.13 for

two examples.
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0

∩Ki

P∩Ki(0)

0

P p1

p2

p3
p4

p5
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PP (0)

Figure 1.13. Examples of projection problems which compute the minimum norm
point in the feasible region.

1.2. Linear Feasibility (LF)

The linear feasibility problem (LF) is the problem of computing a point in a given polyhedron,

PA,b = {x : Ax ≤ b}. In this thesis, we consider polyhedra defined by rational data, as we consider

LF a computational problem and wish to develop efficient algorithms for solving this and related

problems. This problem arises in many areas of optimization and machine learning. Perhaps the

most frequent application of LF is linear programming, however it also arises in machine learning as a

classification problem known as the support vector machine; we discuss several of these applications

in Section 1.2.1. We give a rigorous definition of this computational problem below.

Definition 1.2.1. Consider the following computational problem:

• LF: Given a rational matrix A and a rational vector b, if PA,b := {x : Ax ≤ b} is nonempty,

output a rational x ∈ PA,b, otherwise output NO.

We will refer to LF problems with an empty feasible polyhedron, PA,b, as infeasible. Methods for

solving this problem must be able to detect infeasibility.

For computational reasons, it is useful to note that the vertices of a polyhedron, PA,b, defined by

rational A,b are rational. We include a proof of this fact in Chapter 4, Corollary 4.1.3. Note that

an LF may be formulated as a linear program. Linear programming is known to be polynomial

16



1.2. LINEAR FEASIBILITY (LF)

time solvable via interior-point methods [Kar84] or the ellipsoid method [Kha79]. These methods

compute an approximation to a solution (y within ε distance of the solution x) and then rationality

of the solution allows for rounding of the approximation. The complexity of these methods depend

upon the required approximation accuracy, which depends upon the binary encoding size of the

problem. The simplex method [Dan48] is a popular combinatorial solver for linear programs. While

exponential in the worst-case [KM72], it has been shown to perform well in several average-case

analyses [Bor82,ST04,Ver09]. Linear programming (and LF) can be solved in strongly-polynomial

time for some special cases [Tar86].

1.2.1. Examples of LF Applications. The wide applicability of the LF problem cannot be

overstated. Much of the success of the technical age is due to the success of algorithms developed

for solving problems of this type. The problems that can be formulated as an LF appear in many

areas of optimization, statistics, computer science, and engineering. This section presents brief

discussions of a few problems of this type and related problems. We distinguish between problems

that may be formulated exactly as an LF, and problems that are similar in nature by marking these

as related problems.

1.2.1.1. Linear Programming. A linear program (LP) is the problem of maximizing (minimizing)

a linear objective functional constrained by a system of linear inequalities,

max(min) cTx s.t. Ax ≤ b.

The idea of linear programming goes back to letters of Fourier from 1826 and 1827, though the

creation of this vastly important discipline may be attributed to Dantzig, Kantorovich, Koopmans,

and von Neumann; see [Sch86] and references therein. The quick recognition of its importance

was, in part, due to the fact that it became quite useful following World War II, as many problems

of resource allocation were able to be formulated as LPs and solved using the early-developed

optimization algorithms.

One should note that there are numerous equivalent formulations of an LP; see [Sch86, Section 7.4]

for a discussion. As mentioned previously, however, one great strength of the LP problem is that it

may be equivalently reformulated as an LF problem. For clarity, we provide a rigorous definition
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of LP below and in Lemma 4.2.3 provide the result that LP and LF are strongly-polynomial time

equivalent problems. The proof of this lemma is not new and may be found in [Sch86, Section 7.4];

however, for completeness we include this proof in Chapter 4.

Definition 1.2.2. Consider the following computational problems:

• LP: Given a rational matrix A, a rational column vector b, and a rational row vector cT ,

output rational x ∈ argmax{cTx : Ax ≤ b} if max{cTx : Ax ≤ b} is finite, otherwise

output INFEASIBLE if PA,b is empty and else output INFINITE.

• LFE: Given a rational matrix A and a rational vector b, if P := {x : Ax = b,x ≥ 0} is

nonempty, output a rational x ∈ P , otherwise output NO.

Lemma 1.2.3. LP is strongly-polynomial time equivalent to LFE.

The proof of this lemma is included in Chapter 4, Section 4.2.2. As stated in Definition 1.2.2, the

LFE problem is that of finding a point which satisfies the system of equations Ax = b and the

inequalities x ≥ 0. However, it is trivial to transform this into an equivalent LF.

The geometric interpretation of an LP problem is computing the point in the feasible polyhedron,

PA,b, furthest in the direction of the objective functional, c; see Figure 1.14 for an example. As

seen in Definition 1.2.2 and Figure 1.14, there are three outcomes; the LP can be finite, infeasible,

or infinite.

While LP is polynomially solvable, an important open question is whether there exists a strongly-

polynomial time method for linear programming [Sma00]. Informally speaking, a strongly-

polynomial time method for linear programming is one whose number of arithmetic operations

depends on only the dimensions of the problem, m and n, and not on the binary encoding size of

the input data, σA, σb or σc. The simplex method, a combinatorial, finite method, is a natural

candidate for a strongly-polynomial time algorithm, but all well-known pivot rules have been shown

to have exponential behavior; see [AZ99] and references therein. In Section 1.4, we show that a

strongly-polynomial time algorithm for the minimum norm point problem (discussed in Section 1.3)

would provide a strongly-polynomial time algorithm for LP. It has recently been shown that standard
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c

PA,b

c c

PA,b

Figure 1.14. Left: a finite-valued linear program with feasible polyhedron, PA,b,
and linear objective, c; middle: an infeasible linear program with the green halfspace
incompatible with the brown polyhedron defined by the other halfspaces; right: an
infinite-valued linear program with feasible polyhedron, PA,b, and linear objective, c.

primal-dual log-barrier interior-point methods for linear programming are not strongly-polynomial

time algorithms [ABGJ18], which only increases the interest in combinatorial methods for linear

programming and the minimum norm point problem.

1.2.1.2. Systems of Linear Equations. One of the most common and elementary problems in

data science is that of solving a system of linear equations, Ax = b where A ∈ Rm×n and b ∈ Rm.

The list of exciting and complex areas in which this type of problem arises is far too long to list,

but includes linear inverse problems, regression, a subroutine of the simplex method for linear

programming, a subroutine of Newton’s method for general convex optimization, and a subroutine of

methods for tensor decomposition; see [Sch86,BV04,BBK17] for more information. This problem,

finding x such that Ax = b, may be trivially reformulated as an LF which will be feasible if and only

if the original system of equations is feasible. This reformulation may be geometrically interpreted

as replacing each of the m hyperplanes defined by the rows of the system of equations with two

halfspaces whose intersection is exactly this hyperplane. Solving the system of equations finds a

point in the intersection of the m hyperplanes defined by rows aTi x = bi, while solving the system

of 2m inequalities finds a point in the intersection of the 2m halfspaces defined by aTi x ≤ bi and

−aTi x ≤ −bi. See Figure 1.15 for an example of this transformation.

If the rank of the matrix A is at least n (full-rank) and the problem is feasible then the aforementioned

LF problem will have a unique solution. See the left image of Figure 1.15 for an example of this

19



1.2. LINEAR FEASIBILITY (LF)

P=
A,b P=

a,b = Ha,b

H≤−a,−b

H≤a,b

Figure 1.15. Left: an example of a polyhedron given as the solution set of a system
of equations; right: a geometric view of an example of transformation of Ax = b to
equivalent system of inequalities.

situation. Throughout the rest of this manuscript, we will be concerned primarily with the situation

when the matrix is full-rank and the system is overdetermined, m� n. However, in most applications

where systems of linear equations arise, the system will be noisy or corrupted. By noisy , we mean

the situation in which any, and most likely many, of the entries of A and b have been altered by

noise (which we generally view as numbers of a small random magnitude). By corrupted , we mean

the situation in which few of the entries of A and the entries of the right hand side vector b have

been altered by corruption (which we generally view as numbers of arbitrary magnitude). In Section

1.2.1.4, we discuss a problem related to ‘solving’ a corrupted system of equations, and in Section

1.3.1.4, we discuss a problem related to ‘solving’ a noisy system of equations. We define which

solution is desired in these sections.

1.2.1.3. Linear Support Vector Machine. Within machine learning, supervised binary classifi-

cation is formulated as the support vector machine (SVM) problem, whose feasibility form is an LF

problem. The SVM problem is, given binary classified training data, {(xi, yi)}mi=1 where xi ∈ Rn−1

and

yi =


1 if xi ∈ class 1

−1 if xi ∈ class 2,
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w

Figure 1.16. A linearly separable SVM problem with linear classifier.

to find a linear classifier, F (xi) = wTxi − β so that yiF (xi) ≥ 1 for all i = 1, ...,m. This leads to a

system of linear inequalities X̃w̃ ≤ −1 where

X̃ =


−y1x

T
1 y1

...

−ymxTm ym

 ∈ Rm×n and w̃ =

w

β

 ∈ Rn.

See Figure 1.16 for a visual representation of this separation problem.

Geometrically, this problem is to find a hyperplane which separates these two classes of points. This

supervised machine learning model computes such a hyperplane, known as the linear classifier ,

which can then be used to predict to which class a new, unlabeled data point belongs. For an

example of the use of such a model, see Section 2.4.2. The study of SVM is extensive; see [CE14] for

a reference.

One important note about SVM is that this feasibility formulation is only feasible (a separating

hyperplane given by w̃ exists) if the data points are linearly separable, which is not often the case

in applications. In order to find a classifying hyperplane which separates many of the data points,

soft-margin SVM uses the hinge-loss objective, max(0, 1− yiF (xi)). Note that this objective function

gives positive penalty only to those data points which do not satisfy yiF (xi) ≥ 1. Full soft-margin

SVM usually minimizes the sum of the hinge-loss objectives with a regularizer on the normal of the

hyperplane, λ‖w‖2, which encourages the maximization of the distance of the classifying hyperplane

from the nearest correctly classified data points in each class.
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If we instead consider minimizing the objective function

m∑
i=1

max(0, 1− yiF (xi)),

we are maximizing the sum of yiF (xi) for those data points, xi, which have been misclassified.

One should note that this optimization problem is a convex problem which is easily solvable. This

problem is to minimize the positive residual entries of an LF, which is polynomially solvable with

interior-point methods for linear programming. The problem of instead minimizing the number

of misclassified data points is to find the largest feasible subproblem of an LF, which is known as

MAX-FS. We discuss this related problem next.

1.2.1.4. Related problem: MAX-FS. As one can imagine, many LF problems encountered in

applications are infeasible. There are many useful reformulations of infeasible LF problems (e.g.,

to minimize a norm of the positive entries of the residual, (Ax − b)+). The maximal feasible

subsystem problem, MAX-FS, is to find the largest feasible subsystem in an infeasible LF, that is to

compute

min ‖(Ax− b)+‖0

where ‖·‖0 denotes the `0 cardinality function. This problem is NP-hard due to the presence of the `0

cardinality function, whereas minimizing ‖(Ax−b)+‖p for p ≥ 1 is polynomially approximable due to

the convexity of the norm, and polynomially solvable if p = 1, 2. As well as being NP-hard, MAX-FS is

notoriously difficult to approximate, with the existence of a polynomial time approximation scheme

being equivalent to P = NP [AK95]. This problem is one of the foci of infeasibility analysis, the

study of changes necessary to make an infeasible system of linear constraints feasible; see [MKC00]

for more information.

Instances of MAX-FS arise when solving inconsistent systems of linear equations as mentioned in

Section 1.2.1.2, and in the context of SVM on data that is not linearly-separable as mentioned in

Section 1.2.1.3. Additionally, it appears in applications like logic programming, error detection and

correction in telecommunications, and infeasible linear programming models. However, due to the

difficulty of this problem, it is more common to solve an easier problem like least-squares (see Section
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PA,b

x0

x1 = x2

x3

Figure 1.17. An example of the iterates of an iterative projection method on an LF.

1.3.1.4). In Section 2.2.2, we propose and analyze a randomized method for solving this problem

when the feasible subsystem is large relative to the number of the infeasible constraints.

1.2.2. Iterative Projection Methods for LF. A common and classical approach to solving

LF problems is via iterative projection methods, also known as relaxation methods or Bregman

projection methods [MS54,Agm54,Bre67]. Beginning with an arbitrary guess, x0, the method

iteratively projects into a halfspace in order to satisfy a linear inequality; i.e., choose ik and

define

(1.5) xk = P
H≤aik ,bik

(xk−1) = xk−1 −
(aTikxk−1 − bik)+

‖aik‖2
aik

which is the orthogonal projection of xk−1 into the halfspace, H≤aik ,bik
, defined by the ikth constraint

[Sch86]. There are many variants of this basic method which vary in their row selection rule (i.e.,

how to choose ik) and are repeatedly reinvented and analyzed; see [Cen81] and references therein.

See Figure 1.17 for an example of iterates defined by an iterative projection method on an LF. These

methods may all be considered special cases of the fixed point operator defined in Equation (1.1),

T , with Ki := H≤ai,bi for i ∈ [m].
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Note that if PA,b is nonempty and the row selection strategy selects all constraints infinitely many

times (at least almost surely) then the iterative projection method iterates will converge to a feasible

point [Bre67, MS54, Agm54]. It is possible that no iterate is itself feasible, but the iterates

will continually move closer to the feasible region. Much analysis in this area seeks to bound the

convergence rate, i.e., how quickly the iterates approach a feasible point. Given a bound on the

convergence, d(xk, PA,b) = O(f(k)) where f is an easily invertible function that strictly decreases

with k, for any εK one can compute K so that after K iterations, miny∈PA,b ‖xK − y‖ ≤ εK . This

allows for the development of a stopping criterion, a rule for deciding when to cease a non-finite

iterative method.

Note that the distance between the iterates,

‖xk+1 − xk‖ =
(aTikxk − bik)+

‖aik‖
,

depends upon the magnitude of the residual. In order to use the known distance ‖xk+1 − xk‖ to

bound the unknown distance

min
y∈PA,b

‖xk+1 − y‖,

we must have a bound for how the residual and distance are related. This relationship is governed by

the Hoffman constants investigated first by Agmon [Agm54] and then later by Hoffman [Hof52].

If the system of inequalities Ax ≤ b is feasible, i.e., PA,b 6= ∅, then there exist Hoffman constants

L∞ and L2 so that

d(x, PA,b) ≤ L∞‖(Ax− b)+‖∞ and d(x, PA,b) ≤ L2‖(Ax− b)+‖2

for all x ∈ Rn. The constants satisfy L∞ ≤
√
mL2. These constants are related to the singular

values of the matrix A. We will denote the minimum singular value of A as σmin(A).

The Hoffman constants are, in general, not simple to compute. However, we include several extremely

simple examples in which they may be computed. First, if the system is orthogonal with A = I,

then L2 = 1 and L∞ =
√
n. In the case of highly redundant systems, if every row of A and entry

of b is identical, then L2 = 1/
√
m and L∞ = 1. When the system of inequalities, Ax ≤ b, defines

a consistent system of equations, Ãx = b̃, with full column-rank matrix, Ã, then the Hoffman
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constant, L2, is simply the norm of the left inverse which is equal to the reciprocal of the smallest

singular value of A, ‖Ã−1‖ = 1
σmin(A) .

1.2.2.1. Motzkin’s Method. A simple and classical projection method is Motkzin’s method (MM).

MM is an iterative projection method where the inequality defining the halfspace onto which the

iterate xk is projected is chosen greedily, ik ∈ argmax(aTikxk − bik)+ [MS54]. This method will be

discussed in detail in Section 2.1. With the Hoffman constants, one can prove convergence rate

results like the following (a spin-off of Theorem 3 of [Agm54] which is easily proven in the style

of [LL10]):

Proposition 1.2.4. Consider a normalized system with ‖ai‖ = 1 for all i = 1, ...,m. If the feasible

region PA,b is nonempty then Motzkin’s method converges linearly:

d(xk, PA,b)2 ≤
(

1− 1

L2
∞

)k
d(x0, PA,b)2 ≤

(
1− 1

mL2
2

)k
d(x0, PA,b)2.

We include a proof of this result in Section 2.1.1. Note that this result deterministically guarantees

that the distance between the iterate and the nonempty polyhedral feasible region decreases linearly.

If the desired accuracy between the iterate, xk, and the actual solution, x, is ε, then one need only

run

k ≥
logε− 2 log d(x0, PA,b)

log(1− 1/L2
∞)

iterations.

Note that it is possible to put an upper bound on d(x0, PA,b) in terms of ‖x0‖ and the binary

encoding size of A and b, σA,b, meaning that Motzkin’s method may be used to deterministically

find an ε-approximation to a feasible x if one exists.

In Section 2.1.2, we present a novel, accelerated convergence rate for Motzkin’s method on systems

of linear equations. We additionally present heuristics quantifying the increased convergence rate

for Motzkin’s method on Gaussian systems of linear equations.

1.2.2.2. Randomized Kaczmarz. When the projection halfspace is chosen at random rather than

greedily, the iterative projection method is known as the randomized Kaczmarz (RK) method

[Kac37]. This method will be discussed in detail in Section 2.2. Strohmer and Vershynin [SV09]

provided an elegant convergence analysis of the randomized Kaczmarz method for consistent
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equations. Later, Leventhal and Lewis [LL10] extended the probabilistic analysis from systems

of equations to systems of linear inequalities. They focused on giving bounds on the convergence

rate that take into account the numerical conditions of the system of inequalities captured by the

Hoffman constant, L2.

Theorem 1.2.5 ( [LL10]). If the feasible region, PA,b, is nonempty then the Randomized Kaczmarz

method converges linearly in expectation:

E[d(xk, PA,b)2] ≤
(

1− 1

‖A‖2FL2
2

)k
d(x0, PA,b)2.

We include a proof of this result in Section 2.2.1. Note the similarities between Proposition 1.2.4

and Theorem 1.2.5; the convergence rate constants are identical for normalized systems (‖A‖2F = m).

Additionally, note that as RK is a randomized algorithm, one cannot hope for a deterministic

guarantee as in Proposition 1.2.4. However, again one may design stopping criterion as in the

previous section and they will hold in expectation.

In Section 2.2.2, we present methods which use RK iterations to detect corrupted equations, and

present theoretical guarantees on the probability that these methods discard all corrupted equations

in a system. The problem these methods solve are related to the problems described in Sections

1.2.1.2 and 1.2.1.4.

1.2.2.3. Sampling Kaczmarz-Motzkin. We generalized MM and RK to construct the family of

Sampling Kaczmarz-Motzkin (SKM) methods, hybrid randomized and greedy methods which select

a sample of β rows of A uniformly at random and project onto the halfspace defined by the most

violated inequality among the sample [DLHN17]. The SKM method with β = m recovers Motzkin’s

method, while the SKM method with β = 1 recovers the randomized Kaczmarz method. This

method will be discussed in greater detail in Section 2.3. We now state our first main result.

Theorem 1.2.6. Let A be normalized so ‖ai‖2 = 1 for all rows i = 1, ...,m. If the feasible region

PA,b is nonempty then the SKM method with samples of size β converges at least linearly in

expectation and the bound on the rate depends on the number of satisfied constraints in the system

Ax ≤ b. More precisely, let sk−1 be the number of satisfied constraints after iteration k − 1 and
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Figure 1.18. Comparisons of convergence constant,
(
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, for various

number of satisfied constraints and sample size of SKM, β.

Vk−1 = max{m− sk−1,m− β + 1}; then, in the kth iteration,

E[d(xk, PA,b)2] ≤
(

1− 1

Vk−1L
2
2

)
d(xk−1, PA,b)2 ≤

(
1− 1

mL2
2

)k
d(x0, PA,b)2.

We provide a proof of this result in Section 2.3.1. Note that this result guarantees the convergence

rate (in expectation) of MM and RK, but potentially offers an increased convergence rate. If at

least β − 1 of the constraints are satisfied in the kth iteration, then the expected ratio of the iterate

distances to the feasible region is significantly smaller than guaranteed by Proposition 1.2.4 and

Theorem 1.2.5,
d(xk, PA,b)2

d(xk−1, PA,b)2
≤
(

1− 1

(m− β + 1)L2
2

)
.

In Figure 1.18, we compare these values for various choices of β. In this simulation, L2 is given

by 1/σmin(A) for a normalized Gaussian matrix A ∈ R50000×100 (entries are iid aij ∼ N (0, 1)

before normalization). Note that as many constraints are satisfied, SKM guarantees an accelerated

convergence rate and that many iterations with many satisfied constraints improves the convergence

guarantee drastically.
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Our second main theoretical result notes that, for rational data, one can provide a certificate of

feasibility after finitely many iterations of SKM. This is an extension of the results by Telgen [Tel82]

who also noted the connection between iterative projection techniques and the ellipsoid method.

Denote the maximum violation of a point x ∈ Rn as θ(x) = max{0,max
i∈[m]
{aTi x− bi}}.

Telgen’s proof of the finiteness of Motzkin’s method makes use of the following lemma (which

is also key in demonstrating that Khachiyan’s ellipsoid algorithm is finite and polynomial time

[Kha79]):

Lemma 1.2.7. If the polyhedron, PA,b, defined by the rational system, Ax ≤ b, is empty, then for

all x ∈ Rn, the maximum violation satisfies θ(x) ≥ 2−σA,b+1.

Thus, to detect feasibility of the rational system Ax ≤ b, we need only find a point, xk, with

θ(xk) < 2−σA,b+1; such a point will be called a certificate of feasibility.

In the following theorem, we demonstrate that we expect to find a certificate of feasibility when

the system is feasible, and that if we do not find a certificate after finitely many iterations, we can

put a lower bound on the probability that the system is infeasible. Furthermore, if the system is

feasible, we can bound the probability of finding a certificate of feasibility.

Theorem 1.2.8. Suppose A,b are rational matrices and that we run an SKM method on the

normalized system Ãx ≤ b̃
(

where ãi = 1
‖ai‖ai and b̃i = 1

‖ai‖bi

)
with x0 = 0. Suppose the number

of iterations k satisfies

k >

4σA,b − 4− log n+ 2 log

(
max
j∈[m]
‖aj‖

)
log

(
mL2

2

mL2
2−1

) .

If the system Ax ≤ b is feasible, the probability that the iterate, xk, is not a certificate of feasibility

is at most

max ‖aj‖ 22σA,b−2

n1/2

(
1− 1

mL2
2

)k/2
,

which decreases with k.
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We provide a proof of this result in Section 2.3.2. This result provides a number of iterations after

which we expect that the SKM iterate will be a certificate of feasibility for a feasible LF. Thus, if

one runs more than this number of iterations and the iterate is not a certificate, our bound provides

confidence that the system is infeasible.

1.3. Minimum Norm Point (MNP)

The fundamental algorithmic problem we consider here is: given a convex polytope, P ⊂ Rn, to find

the point x ∈ P of minimum Euclidean-norm, i.e., the closest point to the origin or what we call its

minimum norm point for short. This problem may be interpreted as computing the projection of

the origin, 0, onto P . Note that solving the minimum norm point problem solves `2-projection of

an arbitrary point to a polytope; argminx∈P ‖x− a‖ is the same as a + argminy∈P−a‖y‖.

We focus on the situation in which P is presented as a V -polytope, although there are many

applications in which the polytope could be presented in hyperplane representation; we will discuss

several of these related problems in Subsection 1.3.1.

Additionally, we focus on the situation in which projection is in the Euclidean-norm over the

polytope. However, there are applications in which an alternate norm or weighted norm could be

of interest; we discuss several of these related problems in Subsection 1.3.1. Again, we provide a

rigorous definition of our specific computational problem below.

Definition 1.3.1. Consider the following computational problem:

• MNP: Given rational points p1,p2, . . . ,pm ∈ Rn defining P = conv(p1,p2, ...,pm), output

rational p = argminq∈P ‖q‖2.

For computational reasons, it is useful to note that if the vertices of the polytope are rational then the

minimum norm point will be rational. We include a proof of this fact in Chapter 4, Corollary 4.1.2.

Since the Euclidean-norm is a convex quadratic form, the minimum norm point problem is a convex

quadratic optimization problem. Indeed, it is well-known that a convex quadratic programming

problem can be approximately solved in polynomial time; that is, some point, y, within distance ε

of the desired minimizing point, x, may be found in time polynomial with respect to log 1
ε . This can
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Figure 1.19. Left: MNP problem in which the minimum norm point is on a vertex;
right: MNP problem in which the minimum norm point is on a facet.

be computed with several iterative (convergent) algorithms, such as the ellipsoid method [KTK80]

and interior-point method techniques [BV04]. Each of these are methods whose complexity depends

upon the desired accuracy. However, an approximate numerical solution is inconvenient when

the application requires more information; e.g., if we require to know the face that contains the

minimum norm point. Furthermore, Freund [Fre87] showed that not all convex quadratic programs

are equivalent to norm minimization problems. Thus, in general, we face a specialized situation

which may allow for faster finite and combinatorial algorithms. The minimum norm problem can

indeed be solved in strongly-polynomial time for some polytopes; most notably in network-flow and

transportation polytopes; see [CR16,BK80,Vég16], and references therein.

1.3.1. Examples of MNP Applications. As previously discussed, many problems in data

science may be formulated as projection (MNP) problems. Many of the exciting, recent advances in

machine learning rely upon formulation as convex optimization problems, and use efficient convex

and quadratic optimization methods. This section presents brief discussions of a few problems which

may be formulated as MNPs or related problems. We distinguish between problems which may be

formulated or solved via an MNP formulation exactly as described in Definition 1.3.1, and problems

which make use of an alternate norm or a different polytope description by marking these as related

problems.

1.3.1.1. Related Problem: Compressed Sensing. Compressed sensing is a technique that arises in

signal processing. The problem is to design a measurement matrix A where A ∈ Rp×n with p < n,

30



1.3. MINIMUM NORM POINT (MNP)
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Figure 1.20. A visualization of the compressed sensing recovery technique. Note
that the `1-projection of the origin onto P=

A,y recovers its sparsest point.

such that one may recover any signal x, given a smaller set of sample measurements y = Ax. As

such a system of equations is underdetermined (P=
A,y is an affine subspace of dimension at least

n−p), this may not be possible. However, in the case when x is sparse (as is true in many real-world

applications), the sparsity may be exploited to recover x with accuracy. That is, the sparse signal x

is the unique solution to

(P0): min ‖x‖0 s.t. Ax = y,

for matrices A satisfying certain properties; see [BDE09] and references therein. However, computing

the minimizer of (P0) is NP-hard [Nat95], so this formulation does not offer an immediate algorithmic

advantage. Fortunately, the solution to (P0) coincides with the solution to the `1-projection

problem,

(P1): min ‖x‖1 s.t. Ax = y,

with a measurement matrix, A, that satisfies an appropriate restricted isometry property among

other sufficient conditions; see [CT08] and references therein. See Figure 1.20 for a visualization of

this recovery technique.

One beauty of compressed sensing is that the recovery scheme is naturally algorithmic. First, (P1)

may be formulated as an LP, so any LP method is available for these problems; see [BV04] and

references therein. Besides linear programming techniques, there are also highly successful greedy
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x
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x

s0

s1

s2

Figure 1.21. Left: an example of color sets S0, S1, S2 whose convex hulls contains
x; right: an example of a colorful set {s0, s1, s2} whose convex hull contains x.

techniques for signal recovery; see e.g., [TG07,NV09,NT09]. Additionally, there has been much

work in the area of `1-minimization techniques as it has long been known that this technique often

recovers sparse solutions; see [Tib96], for example.

1.3.1.2. Colorful Linear Programming. In 1982, Bárány proved a generalization of Carathéodory’s

theorem known as the Colorful Carathéodory’s theorem, which we state below [Bár82].

Theorem 1.3.2 (Colorful Carathéodory’s theorem). If x ∈ conv(Si) for i = 0, 1, ..., n where Si is

a set of points in Rn, then there exists a set of n + 1 points each from one of the n + 1 sets Si,

T = {s0, s1, ..., sn} such that si ∈ Si, with x ∈ conv(T ).

The sets S0, S1, ..., Sn should be considered color classes (with each vertex in the set labelled by the

same color). In this setting, the result reveals that there is a colorful set whose convex hull contains

x. See Figure 1.21 for an example.

In [BO97], Bárány and Onn defined and studied the associated computational problem; given

sets of rational points, S0, S1, ..., Sn, decide if there exists a colorful set, {s0, s1, ..., sn}, whose

convex hull contains x ∈ Qn, and if so, find it. They termed this problem the Colorful Linear

Programming problem. In this same work, they show that this problem is strongly NP-complete.

Much work has been done since then to better understand this problem and generalizations;

see [DHST08,ST08,DSX11,MD13,MS16] and references therein for more information.
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However, Bárány and Onn presented an algorithm for approximating a solution to this problem

which makes use of `2-projection onto a V -simplex as a subroutine. Without loss of generality, one

may assume that x = 0, and define an ε-approximation to be a colorful set of points so that the

minimum norm point in their convex hull has norm no more than ε. Their algorithm proceeds as

follows.

Initialize with an arbitrary colorful set, T1 = {s0, s1, ..., sn}. Iterate by checking if the minimum

norm point in Tk, xk, has norm less than ε; if so, stop and return xk. If not, then the minimum

norm point must lie on a face of the convex hull of Tk and there must be at least one si we can

discard so that xk ∈ conv(Tk \ {si}). Then choose s ∈ Si which minimizes sTxk and update

Tk+1 = (Tk \ {si}) ∪ {s}. Repeat.

This method is closely related to one of von Neumann for linear programming [Dan92] as well as

to Wolfe’s method which is discussed in Section 1.3.2. Note that the main computational cost of

the method is the MNP computation in each iteration.

1.3.1.3. Related Problem: Linear Support Vector Machine. The support vector machine problem

is a supervised learning problem which computes a linear classifier for binary-labeled training data

to be used for predicting labels of unlabeled data. This problem and a simple formulation for

linearly separable data is presented in Section 1.2.1.3. However, in most applications, one seeks not

only a linear classifier that separates the given data, but the linear classifier which provides the

largest margin of separation; see Figure 1.22 for an example. This problem is known as hard-margin

SVM and is formulated as a weighted minimum norm problem over a polyhedron. The problem

is to compute the linear classifier given by w and β which separates the given binary classified

data, {(xi, yi)}mi=1, and minimizes ‖w‖22; see [BV04] and references therein. This is a weighted

minimum norm problem since we are minimizing the norm of a projection of the polyhedron. Using

the notation introduced in Section 1.2.1.3, the problem is

min ‖[1T 0]w̃‖22 subject to X̃w̃ ≤ −1.

Thus, the problem is to compute the minimum norm point in the projection of the feasible polyhedron

into the subspace spanned by the first n− 1 coordinate vectors.

33



1.3. MINIMUM NORM POINT (MNP)

w

w

Figure 1.22. A linearly separable SVM problem with two possible linear classifiers.

P=
A,b

0

PP=
A,b

(0)

Figure 1.23. An example of the least-norm formulation of Ax = b for an underde-
termined system of equations.

1.3.1.4. Related Problem: Systems of Linear Equations. As discussed in Section 1.2.1.2, the

problem of solving systems of linear equations, Ax = b, arises in nearly every field of science and

engineering. There are two natural reformulations of systems of linear equations as minimum norm

problems, the least-norm and least-squares formulations.

The least-norm formulation computes the point of minimum norm in the feasible polyhedron;

min ‖x‖2 subject to Ax = b. Here the feasible polyhedron is an affine subspace of dimension

n− rank(A). Note that this formulation applies only to feasible systems of linear equations, and is

most interesting for underdetermined systems. The solution to this problem is also easily computable

as it is given by the closed formula x∗ = AT (AAT )−1b; see [BV04] and references therein. We

also include a proof of this well-known result in Chapter 4. See Figure 1.23 for an example of this

formulation.
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The least-squares formulation computes the point which minimizes the norm of the residual, ‖Ax−b‖;

see [BV04] and references therein. This formulation can be viewed as a minimum norm problem

on a projection of the feasible region of a lift of the original set of hyperplanes. First, we lift the

original set of hyperplanes into higher dimension by introducing slack variables, y = Ax− b; this

allows for nonempty intersection of the higher dimensional affine sets, given by

{z :

[
A −I

]
z = b} where z =

x

y

 .
Now, the problem is reduced to computing a minimum norm problem over a projection of this

polyhedron onto the span of the last m coordinate vectors. Concretely, the least-squares problem

min ‖Ax− b‖2 may be equivalently formulated as

min ‖
[
0T 1

T

]
z‖2 subject to

[
A −I

]
z = b.

1.3.1.5. Submodular Function Minimization. Many problems in machine learning (graph-cut

problems, such as clustering or image segmentation, and set-covering problems, such as image

denoising or sparsity-inducing norms) lead to submodular minimization problems, minA∈2V F (A).

These are discrete optimization problems defined over subsets of a ground set V with a submodular

set function F . A submodular set-function is a function F : 2V → R which satisfies the diminishing-

returns property; for all A ⊂ B ⊂ V and for all k ∈ V \B,

F (A ∪ {k})− F (A) ≥ F (B ∪ {k})− F (B).

These functions naturally occur in many applications like economics (e.g., costs of items) and machine

learning where they model notions of similarity or diversity. It is easy to see that the graph-cut

function, which maps subsets of vertices to the weight of the corresponding cut, is submodular. See

Figure 1.24 for an example. Many problems in machine learning may be formulated as graph-cut

problems. Clustering data points may be formulated as graph-cut problems where the vertices

of the graph are the data points and the edges between them are weighted with their distance

or a similarity metric. Similarly, image segmentation may be formulated as graph-cut problems
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B
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B ∪ {k}

A ∪ {k}

k

Figure 1.24. An example of the submodularity of a graph-cut function. Note
that F (A ∪ {k})− F (A) = 4− 3 ≥ F (B ∪ {k})− F (B) = 5− 4 where F (S) is the
cardinality of the cut between vertex set S ⊂ V and V \ S (number of edges).

where the vertices of the graph are pixels of an image and the edges between neighboring pixels are

weighted with a pixel similarity-score.

The well-studied Lovász extension of the submodular minimization problem leads to solving the

equivalent problem miny∈BF ‖y‖2 where BF is the base polytope for the submodular function

F [B+13]. Thus, this problem is solved by the `2-projection of the origin onto the base polytope.

Indeed, one method which is currently considered an important practical algorithm for submodular

minimization is the Fujishige-Wolfe algorithm [FI11,FHI06,CJK14]. This method uses Wolfe’s

combinatorial method for projection onto a polytope as a subroutine in solving submodular min-

imization. We discuss Wolfe’s method in the next subsection, and in greater detail in Chapter

3.

1.3.2. Wolfe’s Methods for MNP. Wolfe’s method is a combinatorial active-set method for

solving the minimum norm point problem over a polytope, P = conv(p1,p2, ...,pm) ⊂ Rn, introduced

by P. Wolfe in [Wol76]. The method iteratively solves the MNP problem exactly over a sequence of

subsets of no more than n+ 1 affinely independent points from p1, ...,pm and checks to see if the
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0

{y : xTy = ‖x‖2}

Figure 1.25. A visualization of Wolfe’s criterion. Note that pTi x ≥ ‖x‖2 for all
i = 1, ..., 5, so x is the MNP in P .

solution to the subproblem is a solution to the problem over P using the following lemma due to

Wolfe.

Lemma 1.3.3 (Wolfe’s criterion [Wol76]). Let P = conv(p1,p2, ...,pm) ⊂ Rn, then x ∈ P is the

minimum norm point in P if and only if

xTpj ≥ ‖x‖22 for all j ∈ [m].

Note that this tells us that if there exists a point pj so that xTpj < ‖x‖22 then x is not the minimum

norm point in P . Geometrically, this means that if the hyperplane {y : xTy = ‖x‖2} does not

weakly-separate all pj from the origin, then x is not the MNP. We say that pj violates Wolfe’s

criterion and adding this point to the current subset of points will decrease the norm of the minimum

norm point of the current subproblem. See Figure 1.25 for a visualization.

It should be observed that just as Wolfe’s criterion is a rule to decide optimality for the convex

minimizer, one has a very similar rule for deciding optimality over the affine hull. We state the

result and prove this in Chapter 3 since we do not know of a reference.

Lemma 1.3.4 (Optimality condition for affine minimizer). Let {p1,p2, ...,pm} ⊂ Rn, then x ∈

aff(p1,p2, ...,pm) is the affine minimizer if and only if we have pTi x = ‖x‖2 for all i ∈ [m].

The iteration of Wolfe’s method may be informally described as follows: beginning with a set

C ⊂ {pi}mi=1 and x the minimum norm point in conv(C), check if x is the minimum norm point in
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P using Lemma 1.3.3. If not, add pj which violates the optimality condition to the set C. Find the

minimum norm point in the affine hull of the updated C and check if it is in the convex hull of C.

If not, discard old points of C until the affine minimizer of C is the convex minimizer of C. Repeat.

This method is described in far greater detail in Chapter 3.

Note that when one adds points to or removes points from the set C, there may be a choice of which

point to add or remove. We call the rules which decide which point to add insertion rules and will

discuss these further in Chapter 3. Here we mention only one insertion rule, the minnorm rule,

which from the points available to add dictates that one should choose the point of minimum norm.

In Chapter 3, we additionally demonstrate that the choice of insertion rule affects the behavior

of Wolfe’s method and present an example on which two insertion rules have different behavior.

We will discuss further in Chapter 3 the fact that deletion rules have less effect on the behavior

of the algorithm. However, for the purpose of our main results, we follow the general principle

that the same deletion rule is used throughout the course of the method. We will refer to Wolfe’s

method with a specific insertion rule as Wolfe’s algorithm (e.g., Wolfe’s algorithm with the minnorm

insertion rule).

The complexity of Wolfe’s method was not understood since its inception in 1974. Our main

result in Chapter 3 gives the first example that Wolfe’s method displays exponential behavior.

This is akin to the well-known Klee-Minty examples showing exponential behavior for the simplex

method [KM72]. Prior work by [CJK14] showed that after t iterations, Wolfe’s method returns an

O(1/t)-approximate solution to the minimum norm point on any polytope, while work by [LJJ15]

showed that t iterations suffices for an O(e−ρt)-approximate solution, where ρ is an eccentricity

parameter of the polytope. Both of these provide a pseudo-polynomial complexity bound for Wolfe’s

method. Our result presents a family of polytopes on which the number of iterations of Wolfe’s

algorithm with the minnorm insertion rule grows exponentially in the dimension and number of

input points.

Theorem 1.3.5. There exists a family of polytopes given as the convex hull of the point sets P (n)

such that the execution of Wolfe’s algorithm with the minnorm point insertion rule on input P (n)

where n = 2k − 1 has number of iterations at least 5 · 2k−1 − 4.
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Figure 1.26. A plot of the size of P (n) and the iteration lower bound for various
dimension n. Note that the size of P (n) grows linearly in n, while the lower bound
grows exponentially in n.

We give a detailed description of the point sets P (n) and prove this result in Chapter 3. These sets

are of size 2n− 1 and are defined for n = 2k+ 1 where k ≥ 0. See Figure 1.26 for a plot of the size of

P (n) and the number of iterations in the lower bound for various values of n (the dimension).

1.4. How are LF and MNP Related?

It is natural to ask: does this thesis study two unrelated problems whose only connection is that

each may be solved by projection-based methods? The answer is resoundingly negative; here (and in

more detail in Chapter 4) we illustrate the deep connection between LF and MNP. We reduce linear

programming to the minimum norm point problem over a simplex via a series of strongly-polynomial

time reductions in Chapter 4. Recall that in Section 1.2.1.1, we presented that LF and LP are

strongly-polynomial time equivalent. Definitions for LP were given in Section 1.2.1.1. Here, we

give a definition for the problem of distance to a V -simplex (DVS). See [Sch86,GLS88,Sch03] for

detailed discussions of strongly-polynomial time reductions.

Definition 1.4.1. Consider the following computational problem:
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• DVS: Given d ≤ n + 1 affinely independent rational points p1,p2, ...,pd ∈ Rn defining

(d− 1)-dimensional simplex P = conv(p1,p2, ...,pd), output d(0, P )2.

The main result in Chapter 4 reduces linear programming to finding the minimum norm point in a

(vertex-representation) simplex, as finding the minimum norm point also determines the distance

d(0, P )2. It was previously known that LP reduces to MNP over a polytope in weakly-polynomial

time [FHI06], but our result is stronger as it is a novel strongly-polynomial time reduction to MNP

over a simplex.

Theorem 1.4.2. LP reduces to DVS in strongly-polynomial time.

The proof of this result may be found in Chapter 4. It is proved via a string of strongly-polynomial

time reductions. Most of the reductions are classically known, but we highlight the last reduction

as new. This result ties the minimum norm point problem intimately to the question of strong-

polynomiality of linear programming, which is one of Stephen Smale’s eighteen 21st century problems

identified in 1999 [Sma00].
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CHAPTER 2

Iterative Projection Methods for Linear Feasibility

In this chapter we discuss three methods for solving LF problems; Motzkin’s method (MM) and

the randomized Kaczmarz method (RK) are classical methods, and we present a generalization

of the MM and RK methods which we name the Sampling Kaczmarz-Motzkin methods (SKM).

We present simple proofs of some slight generalizations of previously known results for MM and

RK. In Section 2.1.2, we demonstrate the acceleration of Motzkin’s method on a system of linear

equations in the presence of a simple condition on the residual. We go on to show that systems

of linear equations defined by Gaussian matrices satisfy this residual condition. In Section 2.2.2,

we describe methods which use RK to identify and discard corruptions within a system of linear

equations. We present probabilistic guarantees that these methods identify all corrupted equations.

Our main results in this chapter present the convergence rate of the SKM methods and prove that

these methods detect and certify feasibility with high probability (we bound the probability that

SKM iterates are not certificates of feasibility).

2.1. Motzkin’s Method

The first method for linear feasibility we will discuss is Motzkin’s method . This method has been

re-discovered several times; e.g., the famous 1958 perceptron algorithm [Ros58] can be thought of

as a member of this family of methods. The first analysis of this type of method appeared a few

years earlier in 1954, within the work of Agmon [Agm54], and Motzkin and Schoenberg [MS54].

More recently, Motzkin’s method has been referred to as the Kaczmarz method with the “most

violated constraint control” or the “maximal-residual control” [Cen81,NSV+16,PP15].

This method can be described as follows: starting from any initial point x0, a sequence of points

is generated. If the current point xi is feasible we stop, else there must be a constraint aTx ≤ b
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Figure 2.1. Three projections with λ = 1, λ < 1 and λ > 1.

that is most violated. The constraint defines a halfspace H≤a,b. Let P
H≤a,b

(xi) be the orthogonal (`2)

projection of xi onto the halfspace H≤a,b, and choose a number λ (λ ∈ (0, 2]). The new point xi+1 is

given by

xi+1 = xi + λ(P
H≤a,b

(xi)− xi).

Note that the description of Motzkin’s method in Section 1.2.2.1 presented the method with

projection parameter , λ = 1. Here we consider the more general family of methods which allow for

under (λ < 1) and over-projection (λ > 1). Figure 2.1 displays the iteration visually. We present

pseudo-code for Motzkin’s method in Method 2.1. MATLAB code for this algorithm may be found

in Appendix A.

Method 2.1 Motzkin’s method

1: procedure Motzkin(A,b,x0, λ, k)

2: for j = 1, 2, ..., k do

3: xj = xj−1 − λ
(aTij

xj−1−bij )+

‖aij ‖2
aij where ij ∈ argmax

i∈[m]
aTi xj−1 − bi.

4: end for

5: return xk

6: end procedure

For clarity, we include an example of several iterations of Motzkin’s method on an LF in Figure

2.2. Each image illustrates the projection xk−1 to xk in a dashed line. The lines surrounding the

polyhedral feasible region, PA,b represent the boundary hyperplanes of the halfspaces defining PA,b.

The lines are dotted if the constraint defining the corresponding halfspace is satisfied by the iterate

xk−1, and solid if the constraint defining the corresponding halfspace is violated by the iterate xk−1.

The line representing the hyperplane bounding the halfspace defined by the selected constraint,

aTikx ≤ bik is shown in bold.
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Figure 2.2. An example of the iterates formed by Motzkin’s method with λ > 1
on a feasible LF.

Figure 2.3. Left: Projecting onto original hyperplanes. Right: Projecting onto an
induced hyperplane (like those in Chubanov’s method).

A bad feature of Motzkin’s method is that when the system, Ax ≤ b, is infeasible, it cannot

terminate, as there will always be a violated inequality. In the 1980’s, this method was revisited with

interest because it can be seen as a member of the same family of algorithms as the ellipsoid method;

see [AH05,Bet04,Gof80,Tel82] and references therein. One can show that the Motzkin’s method

is finite in all cases when using rational data, in that it can be modified to detect infeasible systems.

In some special cases the method gives a polynomial time algorithm (e.g., for totally unimodular

matrices [MTA81]), but there are also examples of exponential running times (see [Gof82,Tel82]).

In late 2010, Chubanov [Chu12] announced a modification of the traditional method which gives a

strongly-polynomial time algorithm in some situations [BDJ14,VZ14]. Unlike [Agm54,MS54],

who only projected onto the original hyperplanes that describe the polyhedron, PA,b, Chubanov

[Chu12] projects onto new, auxiliary inequalities which are linear combinations of the input. See

Figure 2.3 for an example of this process.
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2.1.1. Convergence Rate. The rate of convergence of Motzkin’s method depends not only on

λ, but also on the Hoffman constants which were first discussed in Section 1.2.2. In this section, we

prove the following generalization of Proposition 1.2.4 which demonstrates that Motzkin’s method

with projection parameter λ 6= 2 converges linearly. The first linear convergence rate result for

Motzkin’s method is due to Agmon [Agm54], but we include this simple generalization and its

proof for completeness.

Proposition 2.1.1. Consider a normalized system with ‖ai‖ = 1 for all i = 1, ...,m. If the feasible

region PA,b is nonempty, then Motzkin’s method (Method 2.1) converges linearly:

d(xk, PA,b)2 ≤
(

1− 2λ− λ2

L2
∞

)k
d(x0, PA,b)2 ≤

(
1− 2λ− λ2

mL2
2

)k
d(x0, PA,b)2.

Proof. As the system has been normalized, note that the method defines xj+1 = xj−λ(aTi∗xj−

bi∗)
+ai∗ where i∗ ∈ argmax

i∈[m]
aTi xj − bi, we have

d(xj+1, PA,b)2 = ‖xj+1 − PPA,b(xj+1)‖2

≤ ‖xj+1 − PPA,b(xj)‖2

= ‖xj − λ(aTi∗xj − bi∗)+ai∗ − PPA,b(xj)‖2

= ‖xj − PPA,b(xj)‖2 + λ2((aTi∗xj − bi∗)+)2‖ai∗‖2 − 2λ(aTi∗xj − bi∗)+aTi∗(xj − PPA,b(xj)),

where PPA,b(x) denotes the `2-projection of x onto PA,b. Since aTi∗(xj − PPA,b(xj)) ≥ aTi∗xj − bi∗

and ‖ai∗‖2 = 1 we have that

d(xj+1, PA,b)2 ≤ d(xj , PA,b)2 + λ2((aTi∗xj − bi∗)+)2‖ai∗‖2 − 2λ(aTi∗xj − bi∗)+(aTi∗xj − bi∗)+

= d(xj , PA,b)2 − (2λ− λ2)((aTi∗xj − bi∗)+)2

= d(xj , PA,b)2 − (2λ− λ2)‖(Axj − b)+‖2∞

≤
(

1− 2λ− λ2

L2
∞

)
d(xj , PA,b)2,
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where the last inequality follows from the definition of the Hoffman constant. With induction, we

find that

d(xk, PA,b)2 ≤
(

1− 2λ− λ2

L2
∞

)k
d(x0, PA,b)2.

Note the fact that L∞ ≤
√
mL2 so we have

d(xk, PA,b)2 ≤
(

1− 2λ− λ2

L2
∞

)k
d(x0, PA,b)2 ≤

(
1− 2λ− λ2

mL2
2

)k
d(x0, PA,b)2.

�

Note that when L∞ <<
√
mL2 this outer bound can be unnecessarily pessimistic in that the

appearance of
√
m is tight only for ‖(Ax−b)+‖2 = m‖(Ax−b)+‖2∞. In Section 2.1.2, we avoid this

potential pessimism by introducing a parameter which bounds the difference between the `2 and

`∞-norm of the residual which we denote the dynamic range. We show that Motzkin’s method for

systems of linear equations features an initially accelerated convergence rate when the residual has

a large dynamic range. We provide bounds for the iterate error which depend on the dynamic range

of the residual. These bounds can potentially be used when designing stopping criteria or hybrid

approaches. Next, for a concrete example we show that Gaussian systems of linear equations have

large dynamic range and provide bounds on this value. We extend this to a corollary which shows

that the initial convergence rate is highly accelerated and our theoretical bound closely matches

experimental evidence.

2.1.2. Acceleration of Motzkin’s Method. In this section, we present the potential acceler-

ation of Motzkin’s method on a system of potentially inconsistent linear equations, Ax = b [HN18a].

Throughout this section, we consider Motzkin’s method with projection parameter λ = 1 which is

appropriately modified to solve systems of linear equations. For clarity, we include pseudo-code in

Method 2.2. MATLAB code for this algorithm may be found in Appendix A.

The advantage of Motzkin’s method is that by greedily selecting the most violated constraint, the

method makes large moves at each iteration, thereby accelerating convergence. One drawback of

course, is that it is computationally expensive to compute which constraint is most violated. For this

reason, in Section 2.3, we propose a hybrid batched variant of the method that randomly selects a
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Method 2.2 Motzkin’s method for Ax = b

1: procedure MotzkinLS(A,b,x0, k)

2: for j = 1, 2, ..., k do

3: xj = xj−1 −
aTij

xj−1−bij
‖aij ‖2

aij where ij ∈ argmax
i∈[m]

|aTi xj−1 − bi|.

4: end for

5: return xk

6: end procedure

x0

x1

x2

x∗

Figure 2.4. An example of a series of projections using the Motzkin approach on an
inconsistent system. Lines represent the hyperplanes consisting of sets {x : aTi x = bi}
for rows aTi of A, and x∗ denotes the desired solution.

batch of rows and then computes the most violated from that batch. When the system is inconsistent,

however, there is an additional drawback to Motzkin’s method because projecting onto the most

violated constraint need not move the iterate closer to the desired solution, as already mentioned

and shown in Figure 2.4. Our first lemma provides a rule for deciding if a greedy projection offers

desirable improvement which depends upon the error of the system of equations, e := Ax−b.

Lemma 2.1.2. Let x denote the desired solution of the system given by matrix A and right hand

side b with ‖ai‖ = 1 for all i = 1, ...,m. If e = Ax − b and ‖Axk − b‖∞ > 4‖e‖∞ then the next

iterate, xk+1 defined by Motzkin’s method with λ = 1 (Method 2.2) satisfies

‖xk+1 − x‖2 ≤ ‖xk − x‖2 − 1

2
‖Axk − b‖2∞.
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Proof. By definition of xk+1, we have

‖xk+1 − x‖2 = ‖xk − x‖2 − 2(aTi∗xk − bi∗)(aTi∗xk − bi∗ − ei∗) + (aTi∗xk − bi∗)2

= ‖xk − x‖2 − (aTi∗xk − bi∗)2 + 2(aTi∗xk − bi∗)ei∗

≤ ‖xk − x‖2 − (aTi∗xk − bi∗)2 + 2|aTi∗xk − bi∗ | · |ei∗ |

= ‖xk − x‖2 − ‖Axk − b‖2∞ + 2‖Axk − b‖∞|ei∗ |

≤ ‖xk − x‖2 − ‖Axk − b‖2∞ + 2‖Axk − b‖∞‖e‖∞(2.1)

≤ ‖xk − x‖2 − 1

2
‖Axk − b‖2∞.

�

Note that this tells us that, while our residual is still large relative to the error, Motzkin’s method

can offer good progress in each iteration. Also, this progress is better than the expected progress

offered by Randomized Kaczmarz (RK) when the residual has good dynamic range, in particular

when:
1

2
‖Axk − b‖2∞ >

1

m
‖Axk − b‖2.

We can use Lemma 2.1.2 to easily obtain the following corollary.

Corollary 2.1.3. Let x denote the desired solution of the system given by matrix A and right hand

side b with ‖ai‖ = 1 for all i = 1, ...,m and write e = Ax − b as the error term. For any given

iteration k, the iterate defined by Motzkin’s method with λ = 1 (Method 2.2) satisfies either (i) or

both (ii) and (iii), where

(i) ‖xk+1 − x‖2 ≤ ‖xk − x‖2 − 1

2
‖Axk − b‖2∞,

(ii) ‖xk − x‖2 ≤ 17mσ−2
min(A)‖e‖2∞,

(iii) ‖xk+1 − x‖2 ≤
(
17mσ−2

min(A) + 8
)
‖e‖2∞.
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In addition, if the method is run with stopping criterion ‖Axk − b‖∞ ≤ 4‖e‖∞, then the method

exhibits the (possibly highly accelerated) convergence rate

‖xT − x‖2 ≤
T−1∏
k=0

(
1− σ2

min(A)

4γk

)
· ‖x0 − x‖2 + 2mσ−2

min(A)‖e‖2∞,(2.2)

≤
(

1− σ2
min(A)

4m

)T
‖x0 − x‖2 + 2mσ−2

min(A)‖e‖2∞,(2.3)

with final error satisfying (ii). Here γk bounds the dynamic range of the kth residual, γk :=

‖Axk−Ax‖2
‖Axk−Ax‖2∞

.

Proof. We consider two cases, depending on whether ‖Axk −b‖∞ > 4‖e‖∞ or ‖Axk −b‖∞ ≤

4‖e‖∞. If the former holds, then (i) is valid by Lemma 2.1.2. If instead the latter holds, then we

first obtain (ii) by the simple argument

‖xk − x‖2 ≤ σ−2
min(A)‖Axk −Ax‖2

≤ σ−2
min(A)m‖Axk −Ax‖2∞

≤ σ−2
min(A)m

(
‖Axk − b‖2∞ + ‖e‖2∞

)
≤ σ−2

min(A)m
(
16‖e‖2∞ + ‖e‖2∞

)
= 17mσ−2

min(A)‖e‖2∞.

To obtain (iii) still in this latter case, we continue from (2.1) showing

‖xk+1 − x‖2 ≤ ‖xk − x‖2 − ‖Axk − b‖2∞ + 2‖Axk − b‖∞‖e‖∞

≤ 17mσ−2
min(A)‖e‖2∞ − ‖Axk − b‖2∞ + 2‖Axk − b‖∞‖e‖∞

≤ 17mσ−2
min(A)‖e‖2∞ + 2‖Axk − b‖∞‖e‖∞

≤ 17mσ−2
min(A)‖e‖2∞ + 8‖e‖2∞

=
(
17mσ−2

min(A) + 8
)
‖e‖2∞.
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To prove (2.2) and (2.3), we first note that by choice of stopping criterion, (i) holds for all 0 ≤ k ≤ T .

Thus for all such k, we have

‖xk − x‖2 ≤ ‖xk−1 − x‖2 − 1

2
‖Axk−1 − b‖2∞

= ‖xk−1 − x‖2 − 1

2
‖(Axk−1 −Ax)− e‖2∞

≤ ‖xk−1 − x‖2 − 1

4
‖Axk−1 −Ax‖2∞ +

1

2
‖e‖2∞(2.4)

= ‖xk−1 − x‖2 − 1

4γk−1
‖Axk−1 −Ax‖2 +

1

2
‖e‖2∞

≤ ‖xk−1 − x‖2 − σ2
min(A)

4γk−1
‖xk−1 − x‖2 +

1

2
‖e‖2∞

=

(
1− σ2

min(A)

4γk−1

)
‖xk−1 − x‖2 +

1

2
‖e‖2∞,(2.5)

where the first line follows from (i), the third from Jensen’s inequality, and the fifth from the facts

that ‖x‖2 ≤ ‖A−1‖2‖Ax‖2 and ‖A−1‖ = 1/σmin(A).

Iterating the relation given by (2.5) recursively yields (we use the convention that an empty sum or

product equates to one)

‖xT − x‖2 ≤
T−1∏
k=0

(
1− σ2

min(A)

4γk

)
· ‖x0 − x‖2 +

T−1∑
j=0

j−1∏
k=0

(
1− σ2

min(A)

γk

)
1

2
‖e‖2∞

≤
T−1∏
k=0

(
1− σ2

min(A)

4γk

)
· ‖x0 − x‖2 +

T−1∑
j=0

(
1− σ2

min(A)

4m

)j
1

2
‖e‖2∞

≤
T−1∏
k=0

(
1− σ2

min(A)

4γk

)
· ‖x0 − x‖2 + 2mσ−2

min(A)‖e‖2∞

≤
(

1− σ2
min(A)

4m

)T
‖x0 − x‖2 + 2mσ−2

min(A)‖e‖2∞,

where the second and fourth inequalities follow from the simple bound γk ≤ m and the third by

bounding above by the infinite sum. The last two inequalities complete the proof of (2.2) and

(2.3). �

2.1.2.1. Experimental Results. We note that the convergence rate given by (2.2) yields a signifi-

cant improvement over that of RK when the dynamic range of many residuals is large, i.e., when
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Figure 2.5. Convergence of Motzkin’s method and RK on correlated system with
corresponding theoretical bounds.

γk � m for many iterations k. In Figure 2.5, we present the convergence of Motzkin and RK on a

random system defined by matrix A with aij ∼ N (1, 0.5), and the corresponding theoretical bounds.

Figure 2.6 presents plots providing the convergence of Motzkin and RK, and the corresponding

theoretical bounds on systems of equations defined by problems from the Netlib linear programming

benchmark set [Net]. These problems contain naturally underdetermined systems, which we trans-

form into overdetermined, inconsistent systems with nearly the same least-squares solution. We

transform the problem, originally given by the underdetermined systems of equations Ax = b by

adding equations to form A
I

x =

 b

xLS + ε

 ,
where xLS is the least-norm solution of Ax = b and ε is a Gaussian vector with small variance.

Each problem has very small error which is distributed relatively uniformly, thus there are many

iterations in which the theoretical bounds hold. These plots are only for the iterations before the

stopping criterion is met.

This acceleration is in force until the stopping criterion given in the corollary. This bound therefore,

can be used to design such stopping criteria; one could design an approach for example that utilizes
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Figure 2.6. Convergence of Motzkin’s method and RK, and corresponding theoret-
ical bounds for Netlib linear programming problems. Upper left: agg; upper right:
agg2; lower left: agg3; lower right: bandm.

Motzkin’s method until reaching this threshold, and then switching to the traditional RK selection

strategy to reduce the convergence horizon. In Figure 2.7, we see that Motzkin outperforms RK

for the initial iterations (while ‖Axk − b‖∞ � ‖e‖∞) on a system with Gaussian noise. However,

for a system with sparse, large magnitude error, Motzkin does not perform as well in the long run,

as it suffers from a worse convergence horizon than RK.

To capitalize on this accelerated convergence, one needs knowledge of an upper bound ‖e‖∞ ≤ β,

in which case the stopping criterion of ‖Axk − b‖∞ ≤ 4β guarantees the accelerated convergence

of (2.2) and a final error of ‖xk − x‖2 ≤ 25mσ−2
min(A)β2. Indeed, one quickly verifies that when
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Figure 2.7. Left: Motzkin’s method vs. RK distance from least-squares solution for
a Gaussian system with Gaussian noise. Right: Motzkin’s method vs. RK distance
from least-squares solution for a Gaussian system with sparse, ‘spiky’ noise.

‖Axk − b‖∞ ≤ 4β, we have

‖xk − x‖ ≤ σ−1
min(A)‖Axk −Ax‖

≤
√
mσ−1

min(A)‖Axk −Ax‖∞

≤
√
mσ−1

min(A) (‖Axk − b‖∞ + ‖e‖∞)

≤
√
mσ−1

min(A) (4β + β) .

Since the acceleration of the method occurs when many of the terms γk are small, we plot an

example in Figure 2.8. As expected, many terms are bounded away from m. We will analyze this in

the Gaussian case further below.

We also only expect this acceleration to be present while the condition of Lemma 2.1.2 is in force

(i.e., prior to the stopping condition given in the corollary). Once the condition of Lemma 2.1.2 is no

longer satisfied, selecting greedily chooses those entries of the residual which have large contribution

from the error, moving the estimation far from the desired solution. While the difference between

greedy selection and randomized selection is not so drastic for Gaussian noise, it will be drastically

different for sparse error. We include an example system in Figure 2.10 to assist with intuition.

Again, one could of course implement the Kaczmarz approach after an initial use of Motzkin’s as a
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Figure 2.8. Left: Average γk values for choice of row dimension, m, of normalized
Gaussian A ∈ Rm×100. Right: Example γk values for iterations of Motzkin’s method
and the corresponding ratio for RK; A ∈ R50000×100 Gaussian. The index ik chosen
in the kth iteration. Horizontal lines denote the values m and m/ log(m).
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Figure 2.9. Left: Motzkin’s method, RK, and hybrid distance from least-squares
solution for a Gaussian system with Gaussian noise. Right: Motzkin’s method, RK,
and hybrid distance from least-squares solution for a Gaussian system with sparse,
‘spiky’ noise.

strategy to gain acceleration without sacrificing convergence horizon. In Figure 2.9, we present the

convergence of Motzkin’s method, the RK method, and a hybrid method which consists of Motzkin

iterations until ‖Axk − b‖∞ ≤ 4‖e‖∞, followed by RK iterations. Again we include results on both

a system with Gaussian error and a system with a sparse, ‘spiky’ error.
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Figure 2.10. An example of three iterations of Motzkin’s method (xMk ) and three

iterations of RK (xRKk ) on a Gaussian system with sparse, ‘spiky’ error. More of the
RK iterations are near the least squares solution while Motzkin consistently selects
the corrupted equation.

2.1.2.2. Heuristics for Gaussians. Here, we study heuristics for our convergence results for the

Gaussian matrix case. Note that our results hold for matrices with normalized rows. For simplicity

however, we will consider an m×n matrix whose entries are i.i.d. Gaussian with mean 0 and variance

1/n. We will then assume we are in the asymptotic regime where this distribution approximates a

Gaussian matrix with normalized unit-norm rows. This can be readily verified by observing that the

distribution of ai is rotationally invariant and thus
(
aTi

x
‖x‖

)2
has the same distribution as

(
aTi e1

)2
,

where e1 is the first coordinate vector. Thus it has the same distribution as the ratio of chi-square

random variables g2
1/
∑n

i=1 g
2
i , for i.i.d. standard normal gi. One then applies Slutsky’s theorem to

obtain the asymptotic result. To that end, we assume m and n both grow linearly with respect to

one another, and that they are both substantially large.

Define Ik to be the rows of A that are independent from xk and note that Ik ⊆ Ik−1 ⊆ ... ⊆ I1 ⊆

I0 = [m]. Fix iteration k and define m′ = m− |Ik|. Note that m− k ≤ m′ ≤ m is the dimension of

the sub-matrix whose rows are independent of the iterates up to iteration k. Throughout this section

P and E refer to probability and expectation taken with respect to the random and unsampled

portion of the matrix A, AIk , which has m′ rows.
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Our first lemma gives a bound on the expected dynamic range for a Gaussian matrix.

Lemma 2.1.4. If A ∈ Rm×n is a Gaussian matrix with aij ∼ N (0, 1/n) and x is independent of at

least m′ rows of A (e.g., constructed via k iterations of Motzkin’s method) then

E‖Ax‖2

E‖Ax‖2∞
.
m′ +

∑
i 6∈Ik ‖ai‖

2

log(m′)
.

Proof. First note that

E(

m∑
i=1

(aTi x)2) =

m∑
i=1

E(aTi x)2

≤
m∑
i=1

E(‖ai‖2‖x‖2) by Cauchy-Schwarz

≤
∑
i∈Ik

E(‖ai‖2‖x‖2) +
∑
i 6∈Ik

‖ai‖2‖x‖2

= (m′ +
∑
i 6∈Ik

‖ai‖2)‖x‖2.

Next, note that if ai and x are independent then aTi x ∼ N (0, ‖x‖2). Then

E(max
i∈[m]

(aTi x)2) ≥ E(max
i∈Ik

(aTi x)2)

≥ E(max
i∈Ik

aTi x)2

≥ (Emax
i∈Ik

aTi x)2 by Jensen’s inequality

≥ c‖x‖2 log(m′),

as it is commonly known that E(maxi∈[N ]Xi) ≥ cσ
√
logN for Xi ∼ N (0, σ2). Thus, we have

E‖Ax‖2∞ ≥ c‖x‖2 log(m′) ≥ c log(m′)

m′ +
∑

i 6∈Ik ‖ai‖
2
E‖Ax‖2.

�

We can use this lemma along with our main result to obtain the following.
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Corollary 2.1.5. Let A ∈ Rm×n be a normalized Gaussian matrix as described previously, x denote

the desired solution of the system given by matrix A and right hand side b, write e = Ax− b as

the error term and assume x0 is chosen so that x0 − x is independent of the rows of A, aTi . If

Motzkin’s method with λ = 1 (Method 2.2) is run with stopping criterion ‖Axk − b‖∞ ≤ 4‖e‖∞, in

expectation the method exhibits the accelerated convergence rate

(2.6) E‖xk+1 − x‖2 . E

[(
1− log(m′)σ2

min(A)

4m

)
‖xk − x‖2 +

1

2
‖e‖2∞

]
.

Proof. Beginning from line (2.4) of the proof of Corollary 2.1.3 and taking expectation of both

sides, we have

E‖xk+1 − x‖2 ≤ E‖xk − x‖2 − 1

4
E‖A(xk − x)‖2∞ +

1

2
E‖e‖2∞

. E‖xk − x‖2 − log(m′)

4(m′ +
∑

i 6∈Ik ‖ai‖
2)
E‖A(xk − x)‖2 +

1

2
E‖e‖2∞

= E

[
‖xk − x‖2 − log(m′)

4m
‖Axk −Ax‖2 +

1

2
‖e‖2∞

]

≤ E

[(
1− log(m′)σ2

min(A)

4m

)
‖xk − x‖2 +

1

2
‖e‖2∞

]
,

where the second inequality follows from Lemma 2.1.4 and the fourth from properties of singular

values. �

This corollary implies a logarithmic improvement in the convergence rate, at least initially. Of course,

we conjecture that the log(m′) term in (2.6) is an artifact of the proof and could actually be replaced

with log(m). This is supported by the experiments shown in Figures 2.8 and 2.11. Furthermore,

Corollary 5.35 of [Ver12] provides a lower bound for the size of the smallest singular value of A

with high probability, P
(
σmin(A) ≤

√
m/n− 1− t/

√
n
)
≤ 2e−t

2/2. That is, asymptotically σmin(A)

is tightly centered around
√
m/n− 1.
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Figure 2.11. Convergence of Motzkin’s method and RK on Gaussian system with
corresponding theoretical bounds.

2.2. Randomized Kaczmarz Method

The second method for linear feasibility we will discuss is the Kaczmarz method [Kac37,GBH70]

which is one of the most popular solvers of overdetermined systems of linear equations due to its

speed and simplicity. Just like Motzkin’s, it is an iterative method which consists of a series of

alternating orthogonal projections onto the halfspaces defined by the system of inequalities. The

original Kaczmarz method simply cycles through the inequalities sequentially, so its convergence rate

depends on the order of the rows. One way to overcome this is to use the inequalities in a random

order, rather than sequentially [HS78,HM93,Nat01]. More precisely, we begin with Ax ≤ b, a

linear system of inequalities where A is an m× n matrix with rows aTi and x0 an initial guess. For

k = 0, 1, 2, ... one defines

xk+1 = xk − λ
(aTi xk − bi)+

‖ai‖2
ai,

where i is chosen from {1, 2, ...,m} at random, say with probability proportional to ‖ai‖2, and

λ ∈ (0, 2]. Thus, xk lies on the ray which begins at xk−1 and extends through PHai,bi
(xk−1).

Pseudo-code for the randomized Kaczmarz method (as stated in [SV09]) is provided in Method 2.3.

Note that the description of RK in Section 1.2.2.2 presented the method with projection parameter ,
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Figure 2.12. An example of the iterates formed by the randomized Kaczmarz
method with λ = 1 on a feasible LF. Note that the middle image represents two
iterations of RK where the randomly selected constraints were satisfied by the
previous iterate.

λ = 1. Here we consider the more general family of methods which allow for under (λ < 1) and

over-projection (λ > 1). MATLAB code for this algorithm may be found in Appendix A.

Method 2.3 Randomized Kaczmarz method

1: procedure RK(A,b,x0, λ, k)

2: for j = 1, 2, ..., k do

3: xj = xj−1 − λ
(aTij

xj−1−bij )+

‖aij ‖2
aij where ij = t ∈ [m] with probability proportional to ‖at‖2.

4: end for

5: return xk

6: end procedure

For clarity, we include an example of several iterations of the randomized Kaczmarz method on

an LF in Figure 2.12. Each image illustrates the projection xk−1 to xk in a dashed line. The

lines surrounding the polyhedral feasible region, PA,b represent the boundary hyperplanes of the

halfspaces defining PA,b. The lines are dotted if the constraint defining the corresponding halfspace

is satisfied by the iterate xk−1, and solid if the constraint defining the corresponding halfspace is

violated by the iterate xk−1. The line representing the hyperplane bounding the halfspace defined

by the randomly selected constraint, aTikx ≤ bik is shown in bold and labeled Haik ,bik
.

The work of Strohmer and Vershynin [SV09] sparked a new interest in the Kaczmarz approach

and there have been many recent developments in the method and its analysis. Needell [Nee10]

extended this work to the case of inconsistent systems of equations, showing exponential convergence

down to some fixed convergence horizon, see also [WAL15]. In order to break this convergence
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x0
xRK

xMM

Figure 2.13. An example of the iterates defined by RK, xRK , and Motzkin’s
method, xMM . Note that xRK is nearer to the feasible region than xMM , despite
being constructed via a random selection.

horizon, one needs to modify the Kaczmarz method since by design it projects exactly onto a given

hyperplane. Zouzias and Freris [ZF13] analyzed an extended randomized Kaczmarz method which

incorporates an additional projection step to reduce the size of the residual. This was extended to

the block case in [NZZ15]. The relation of these approaches to coordinate descent and gradient

descent methods has also been recently studied, see e.g., [GO12,Dum14,NSW14,OZ15,MNR15,

HNR15,OZ15,GR15].

Other variations to the Kaczmarz method include block methods [Elf80,EHL81,NW13,NT13,

BN, XZ02] which have been shown to offer acceleration for certain systems of equations with

fast-multipliers. Other acceleration and convergence schemes focus on sampling selections [AWL14,

EN11, NSW14, OZ17], projection parameters [WM67, CEG83, Tan71, HN90], adding row

directions [PPKR12], parallelized implementations [LWS14,ADG14], structure exploiting ap-

proaches [LW15, LMY16], and the use of preconditioning [GPS16]. Some other references on

recent work include [CP12,RT12].

Now, one could hope that the distance remaining to the polyhedral feasible region is always decreased

more by the deterministic, greedy strategy of Motzkin than by the randomized selection of the

randomized Kaczmarz method, however this is not always the case. Consider the example in Figure

2.13.

2.2.1. Convergence Rate. Strohmer and Vershynin [SV09] provided an elegant convergence

analysis of the randomized Kaczmarz method for consistent equations. Later, Leventhal and
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Lewis [LL10] extended the probabilistic analysis from systems of equations to systems of linear

inequalities. They focused on giving bounds on the convergence rate that take into account the

numerical conditions captured by the Hoffman constants L∞ and L2. If one additionally makes use

of a projection parameter, λ 6= 1, you can easily extend the convergence rate in [LL10] to account

for this:

Proposition 2.2.1. If the feasible region, PA,b, is nonempty then the Randomized Kaczmarz method

(Method 2.3) with projection parameter λ converges linearly in expectation:

E[d(xk, PA,b)2] ≤
(

1− 2λ− λ2

‖A‖2FL2
2

)k
d(x0, PA,b)2.

Proof. By the definition of the iterate xj+1, we have

d(xj+1, PA,b)2 = ‖xj+1 − PPA,b(xj+1)‖2 ≤ ‖xj+1 − PPA,b(xj)‖2

=

∥∥∥∥∥xj − λ(aTij+1
xj − bij+1)+

‖aij+1‖2
aij+1 − PPA,b(xj)

∥∥∥∥∥
2

= ‖xj − PPA,b(xj)‖2 + λ2
((aTij+1

xj − bij+1)+)2

‖aij+1‖4
‖aij+1‖2

− 2λ
(aTij+1

xj − bij+1)+

‖aij+1‖2
aTij+1

(xj − PPA,b(xj)),

where PPA,b(x) denotes the `2-projection of x onto PA,b. Since aTij+1
(xj−PPA,b(xj)) ≥ aTij+1

xj−bij+1

we have that

d(xj+1, PA,b)2 ≤ d(xj , PA,b)2 + λ2
((aTij+1

xj − bij+1)+)2

‖aij+1‖2
− 2λ

((aTij+1
xj − bij+1)+)2

‖aij+1‖2

= d(xj , PA,b)2 − (2λ− λ2)
((aTij+1

xj − bij+1)+)2

‖aij+1‖2
.

Now, note that the ij+1st constraint is chosen with probability ‖aij+1‖2/‖A‖2F , so taking expectation

of both sides with respect to the choice of the ij+1st constraint (and conditioning upon all previous
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row selections) yields

Ej+1[d(xj+1, PA,b)2] ≤
m∑
i=1

‖ai‖2

‖A‖2F
d(xj , PA,b)2 − (2λ− λ2)

m∑
i=1

‖ai‖2

‖A‖2F
((aTi xj − bi)+)2

‖ai‖2

= d(xj , PA,b)2 − (2λ− λ2)
‖(Axj − b)+‖2

‖A‖2F

≤ d(xj , PA,b)2 − (2λ− λ2)
d(xj , PA,b)2

‖A‖2FL2
2

,

where the last inequality follows from the definition of the Hoffman constant, L2. Iterating this

inequality yields

E[d(xk, PA,b)2] ≤
(

1− 2λ− λ2

‖A‖2FL2
2

)k
d(x0, PA,b)2,

where E is with respect to all k random selections of constraints. �

Note the similarities between Propositions 2.1.1 and 2.2.1: the convergence rate constants are

identical for normalized systems (‖A‖2F = m).

2.2.2. A Kaczmarz-Type Approach for Corruption. We consider solving highly overde-

termined, large-scale systems of linear equations represented by a matrix A ∈ Rm×n and vector

b ∈ Rm with m� n [HN17,HN18b]. Note that the system may not have a solution, so one may

seek the least squares solution xLS; many efficient solvers have been developed that converge to

such a solution. An alternative setting is one where there is a solution x∗ (which we refer to as

the pseudo-solution) to our desired system Ax = b∗, but rather than observing b∗ we only have

access to a corrupted version, b, where b = b∗ + bC . When the number of non-zero entries in

bC , denoted s := ‖bC‖0, is small relative to m, one may still hope to recover the “true” solution

x∗. For simplicity, we define some general notation to be used throughout this subsection. Let

I ⊂ [m] be the set of indices of inconsistent equations, i.e., supp(bC) = I and s = |I| � m. We

refer to the amount of corruption in each index of I by εi ∈ R, so bC =
∑

i∈I εiei. We let ε∗ be

the smallest magnitude of the corruption vector, ε∗ := mini∈I |εi|. We will also use A∗ to refer

to the matrix A without the rows indexed by I, A∗ = AIC , and likewise for b∗. Note then that

b∗ := bIC = b∗
IC

. Formally, given matrix A and right hand side vector b corrupted as described
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above, we are searching for x∗ given by:

(2.7) (bC ,x
∗) = argminbC ,x‖bC‖0 such that Ax = b− bC .

Note that if for all corrupted equations, i ∈ I, we have ai is not parallel to any affine subspace of

dimension at least one defined by more than m− 2s− 1 equations of the system Ax = b, then the

solution to (2.7) coincides with the pseudo-solution. In particular, for ai in general position, this

holds. For convenience, we assume throughout this subsection that ‖ai‖ = 1 for i ∈ [m].

It is important to point out that solving for the pseudo-solution of systems Ax = b = b∗+bC where

s is small relative to m is a special case of the problem MAX-FS. This type of sparse corruption models

many applications, ranging from medical imaging to sensor networks and error correcting codes. For

example, a small number of sensors may malfunction, resulting in large catastrophic reporting errors

in the vector b; since the reporting errors themselves may be arbitrarily large, the least squares

solution is far from the desired solution, but since the number of such reporting errors is small, we

may still hope to recover the true solution to the uncorrupted system. We emphasize that such a

pseudo-solution x∗ may be very far from the least squares solution xLS when the entries in bC are

large, even when there are only a few non-zero corruptions; see Figure 2.14 for a visual. Similar

types of sparse errors may also appear in medical imaging from artifacts or system malfunctions, or

in error correcting codes from transmission errors. Indeed, the problem of so-called sparse recovery

is well-studied in the approximation and compressed sensing literature [FR13,EK12]. However, in

this subsection, we are concerned with the setting where the system is highly overdetermined, the

errors in b are sparse and large, and the system may be so large-scale that it cannot be fully loaded

into memory. This latter property has sparked a recent resurgence of work in the area of iterative

solvers that do not need access to the entire system at once [GHJ75,HLL78,Nat01,SV09]. Our

work is motivated by such iterative methods and will make use of the randomized Kaczmarz method

whose pseudo-code appears in Method 2.4. MATLAB code for this algorithm may be found in

Appendix A.

It is known that the randomized Kaczmarz method converges for systems Ax = b corrupted by

noise with an error threshold dependent on A and the noise. In [Nee10] it was shown that this
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Method 2.4 Randomized Kaczmarz method for Ax = b

1: procedure RKLS(A,b,x0, k)

2: for j = 1, 2, ..., k do

3: xj = xj−1 −
aTij

xj−1−bij
‖aij ‖2

aij where ij = t ∈ [m] with probability proportional to ‖at‖2.

4: end for

5: return xk

6: end procedure

x∗

xLS

Figure 2.14. A system for which the pseudo-solution x? is very far from the least
squares solution xLS. Lines represent the hyperplanes consisting of all systems
{x : aTi x = bi} for rows aTi of A.

method has iterates that satisfy:

(2.8) ‖xk − xLS‖2 ≤
(

1− σ2
min(A)

‖A‖2F

)k
‖x0 − xLS‖2 +

‖A‖2F
σ2

min(A)
‖e‖2∞,

where σmin(A) denotes the minimum singular value of A, ‖A‖F its Frobenius norm, xLS the least

squares solution and e = b−AxLS denotes the error term (also known as the residual). There are

variants of this method that converge to the least squares solution [CEG83,ZF13], however these

typically either require operations on the columns or unknown relaxation parameters. However, we

are now interested in using randomized Kaczmarz for infeasible systems in which the least-squares

solution is unsatisfactory because it is far from satisfying most of the equations (e.g., the noise is

sparse and large). The intuition behind our proposed approaches is simple. Since the number of

corruptions is small, most iterates of an RK approach will be close to the pseudo-solution, since
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it is rare to project onto a corrupted hyperplane. Therefore, if we run the RK method several

times, or for several windows of time, most of the iterates upon which we halt will be close to

the pseudo-solution. Such iterates will also have the property that the largest components of the

absolute value of their residual, |Axk − b|, will correspond to the large corrupted entries. We can

thus utilize this knowledge to gradually detect the corruptions, remove them from the system, and

solve for the desired pseudo-solution.

Our proposed methods can thus be described as follows. Each method consists of W windows of

k RK iterations beginning with x0 = 0. In each window, we collect the d indices of the largest

magnitude residual entries and after all windows, we solve the system without the rows of A indexed

by these collected indices (there may be as many as dW rows removed). The methods differ in

two ways. First, we can choose to remove d rows within each window (resulting in Method 2.5

below), or simply collect these indices and remove all collected rows after the W windows (resulting

in Methods 2.6 and 2.7 below). Second, when waiting to remove the rows until after W windows,

we may simply select the d largest residual entries in each window (Method 2.6), or we may require

that the selected indices are always unique (so exactly dW rows are removed), resulting in Method

2.7. The values W,k and d are all parameters of the methods. We give theoretical results for various

natural choices of these parameters. MATLAB code for each of these algorithms may be found in

Appendix A.

Method 2.5 Windowed Kaczmarz with Removal

1: procedure WKwR(A,b, k,W, d)

2: B = A, c = b

3: for i = 1, 2, ...W do

4: xik = RKLS(B, c,0, k)

5: D = argmaxD⊂[B],|D|=d
∑

j∈D |Bxik − c|j .

6: B = BDC , c = cDC

7: end for

8: return x, where Bx = c

9: end procedure
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Method 2.6 Windowed Kaczmarz without Removal

1: procedure WKwoR(A,b, k,W, d)

2: S = ∅

3: for i = 1, 2, ...W do

4: xik = RKLS(A,b,0, k)

5: D = argmaxD⊂[A],|D|=d
∑

j∈D |Axik − b|j .

6: S = S ∪D

7: end for

8: return x, where ASCx = bSC

9: end procedure

Method 2.7 Windowed Kaczmarz without Removal with Unique Selection

1: procedure WKwoRUS(A,b, k,W, d)

2: S = ∅

3: for i = 1, 2, ...W do

4: xik = RKLS(A,b,0, k)

5: D = argmaxD⊂[A]−S,|D|=d
∑

j∈D |Axik − b|j .

6: S = S ∪D

7: end for

8: return x, where ASCx = bSC

9: end procedure

2.2.2.1. Main Results. Our theoretical results provide a lower bound for the probability of

successfully removing all corrupted equations after performing Method 2.6 or Method 2.7 with

natural values for k, d and W . Lemma 2.2.2 shows that there is a detection horizon around the

pseudo-solution, so that if ‖x− x∗‖ is sufficiently small, the largest residual entries (of |Ax− b|)

correspond exactly to the corrupted equations and we may distinguish these equations from the

consistent system. Lemma 2.2.3 gives a value of k so that after k iterations of randomized Kaczmarz,

one can give a nonzero lower bound on the probability that the current iterate is within the detection

horizon. Theorems 2.2.4 and 2.2.5 then give lower bounds on the probability of successfully detecting

all corrupted equations in one out of all W windows for Methods 2.6 and 2.7, respectively.
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Lemma 2.2.2. If ‖x − x∗‖ < 1
2ε
∗ we have that the d ≤ s indices of largest magnitude residual

entries are contained in I; that is for

D = argmax
D⊂[A],|D|=d

∑
i∈D
|Ax− b|i

we have D ⊂ I.

Proof. Suppose ‖x− x∗‖ < 1
2ε
∗. Note that for ‖ai‖ = 1, we have

|ri| = |Ax− b|i = |aTi x− bi| =
|aTi x− bi|
‖ai‖

= d(x, Hi)

where d(x, H) is the Euclidean distance of x to the set H and Hi = {x : aTi x = bi} is the hyperplane

defined by the ith equation. Next, note that

d(x∗, Hi) = |aTi x∗ − bi| = |b∗i − bi| =


|εi| i ∈ I

0 i 6∈ I
.

Now, consider ri for i ∈ I. Denoting by PH the orthogonal projectiong onto H, note that

|ri| = d(x, Hi) = ‖PHi(x)− x‖ = ‖PHi(x)− x∗ − (x− x∗)‖

≥ |‖PHi(x)− x∗‖ − ‖x− x∗‖|

≥ d(x∗, Hi)− ‖x− x∗‖ > 1

2
ε∗,

where the first inequality follows from the triangle inequality and the second from the fact that

‖PHi(x)− x∗‖ ≥ d(x∗, Hi) = |εi| ≥ ε∗ > ‖x− x∗‖.

For i 6∈ I, since x∗ ∈ Hi,

|ri| = d(x, Hi) ≤ ‖x− x∗‖ < 1

2
ε∗.

To summarize,

|ri| = |aTi xk − bi|


< 1

2ε
∗ for i 6∈ I

> 1
2ε
∗ for i ∈ I

.

66



2.2. RANDOMIZED KACZMARZ METHOD

Thus, if we consider the above, D = argmax
D⊂[A],|D|=d

∑
i∈D
|Ax− b|i is clearly a subset of I for d ≤ s. �

Lemma 2.2.3. Let 0 < δ < 1. Define

k∗ = max

(
0,

⌈
log
(
δ(ε∗)2

4‖x∗‖2

)
log
(

1− σ2
min(A∗)
m−s

)⌉).
Then in window i of Method 2.6 or Method 2.7, the iterate produced by the RK iterations, xik∗

satisfies

(2.9) P
[
‖xik∗ − x∗‖ ≤ 1

2
ε∗
]
≥ (1− δ)

(m− s
m

)k∗
.

Proof. Let E be the event that i1, i2, ..., ik∗ 6∈ I for all index selections in window W . Note

that

P(E) ≥
(
m− s
m

)k∗
since there are m− s consistent equations and the equations are being selected uniformly at random

(the rows of A have unit norm).

Now, note that if one conditions upon E and looks at the expected value of ‖xk∗ − x∗‖2, this will

be the same value as the expectation of ‖xk∗ − x∗‖2 if xk∗ is created with randomized Kaczmarz

run on A∗,b∗; we denote this expectation as EA∗,b∗ [‖xk∗ − x∗‖2]. Applying [SV09, Theorem 2] (a

special case of Proposition 2.2.1), we see that

E[‖xk∗ − x∗‖2|E] = EA∗,b∗ [‖xk∗ − x∗‖2]

≤
(

1− σ2
min(A∗)

m− s

)k∗
‖x0 − x∗‖2

=

(
1− σ2

min(A∗)

m− s

)k∗
‖x∗‖2.

Now, since k∗ ≥
log

(
δ(ε∗)2

4‖x∗‖2

)
log

(
1−

σ2
min

(A∗)
(m−s)

) , we have
(

1− σ2
min(A∗)
m−s

)k∗
≤ δ(ε∗)2

4‖x∗‖2 and so

E[‖xk∗ − x∗‖2|E] ≤ δ

4
(ε∗)2.
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Applying the conditional Markov inequality, we have

P[‖xk∗ − x∗‖2 > 1

4
(ε∗)2|E] ≤ E[‖xk∗ − x∗‖2|E]

1
4(ε∗)2

≤
δ
4(ε∗)2

1
4(ε∗)2

= δ

Thus, P[‖xk∗ − x∗‖2 ≤ 1
4(ε∗)2|E] ≥ 1− δ so

P[‖xk∗ − x∗‖ ≤ 1

2
ε∗] ≥ (1− δ)

(
m− s
m

)k∗
.

�

First, note that we must restrict k∗ to be nonnegative; since log

(
1 − σ2

min(A∗)
m−s

)
is negative, if

log

(
δ(ε∗)2

4‖x∗‖2

)
is positive, we must define k∗ = 0. However, this corresponds to the situation in which

ε∗ > 2‖x∗‖ and the initial iterate x0 = 0 is within the detection horizon. Additionally, note that k∗

depends upon δ, so one is not able to make this probability as large as one likes. As δ decreases, k∗

increases, so the right hand side of (2.9) is bounded away from 1. In Figure 2.15, we plot k∗ and

(1− δ)
(
m−s
m

)k∗
for Gaussian systems with various number of corruptions. In the plots, we see that

the value of δ which maximizes this probability depends upon s. Determining this maximizing δ

was not computable in closed form. Additionally, we point out that the empirical behavior of the

method does not appear to depend upon δ; we believe this is an artifact of our proof.

Theorem 2.2.4. Let 0 < δ < 1. Suppose d ≥ s, W ≤ bm−nd c and k∗ is as given in Lemma 2.2.3.

Then Method 2.6 on A,b will detect the corrupted equations (I ⊂ S) and the remaining equations

given by A[m]−S ,b[m]−S will have solution x∗ with probability at least

1−
[
1− (1− δ)

(m− s
m

)k∗]W
.

Proof. Since d ≥ s, we need only have one ‘successful’ window where ‖xk∗ − x∗‖ < 1
2ε
∗ in

order to guarantee detection of all of the corrupted equations, by Lemma 2.2.2. Note that all of the

windows are independent from each other in Method 2.6 and Lemma 2.2.3 yields that the probability

that ‖xk∗ − x∗‖ < 1
2ε
∗ is at least p := (1 − δ)

(
m−s
m

)k∗
. Thus, we may bound the probability of

68



2.2. RANDOMIZED KACZMARZ METHOD

success by that of a binomial distribution with parameters W and p. Thus, success happens with

probability at least

1−
[
1− (1− δ)

(m− s
m

)k∗]W
.

�

In Figure 2.15, we plot 1−
[
1− (1− δ)

(
m−s
m

)k∗]W
for corrupted Gaussian systems and choices of

δ. Here W = b(m− n)/dc and d = s. Again, we reiterate that we believe the dependence upon δ is

an artifact of the proof of Lemma 2.2.3. Substituting e.g., δ = 0.5 in probability bounds gives a

value not far from its maximum for all systems we studied; see Figures 2.15 and 2.18.

Theorem 2.2.5. Let 0 < δ < 1. Suppose d ≥ 1, W ≤ bm−nd c and k∗ is as given in Lemma 2.2.3.

Then Method 2.7 on A,b will detect the corrupted equations (I ⊂ S) and the remaining equations

given by A[m]−S ,b[m]−S will have solution x∗ with probability at least

1−
ds/de−1∑
j=0

(
W

j

)
pj(1− p)W−j

where p = (1− δ)
(
m−s
m

)k∗
.

Proof. Since d ≥ 1 and we are selecting unique indices in each iteration of Method 2.7, we need

to have ds/de ‘successful’ windows where ‖xk∗ − x∗‖ < 1
2ε
∗ in order to guarantee detection of all of

the corrupted equations, by Lemma 2.2.2. Since all of the windows of RK iterations are independent

from each other in Method 2.7 and by Lemma 2.2.3 the probability that ‖xk∗ −x∗‖ < 1
2ε
∗ is at least

p := (1− δ)
(
m−s
m

)k∗
, we may bound the probability of success by that of a cumulative binomial

distribution with parameters W and p and we calculate the probability that the number of successes,

j ≥ ds/de. Thus, success happens with probability defined by the probabilities that less than ds/de

windows are successful. The probability of success is bounded below by

1−
ds/de−1∑
j=0

(
W

j

)
pj(1− p)W−j .

�
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In Figure ??, we plot 1−
∑ds/de−1

j=0

(
W
j

)
pj(1− p)W−j for corrupted Gaussian systems and choices

of δ. Here W = 2, d = ds/2e, and k∗ is as given in Lemma 2.2.3. We believe that the dependence

upon δ is an artifact of our proof. Evidence suggesting this is seen in the middle and right plots of

Figure ??, as the empirical behavior of Method 2.7 does not appear to depend upon δ.

These bounds on the probability of successfully detecting all corrupted equations in one window,

while provable and nonzero, are pessimistic and do not resemble the experimental rate of success for

any systems we studied; see Figures 2.15 and 2.18. A tighter bound on the rate of convergence for

particular systems could provide a tighter lower bound on this probability.

2.2.2.2. Experimental Results. We are only able to prove theoretical results when the windows of

Methods 2.6 and 2.7 are independent and for the specified values of k∗ and d. However, in practice,

these methods perform well for different values of k and d, and Method 2.5 can be quite successful.

In this section, we present experimental results demonstrating the performance of these methods,

for various choices of d and k, on Gaussian, correlated, and real systems.

Random Data Experiments. The plots in Figures 2.15 and 2.16 are all for Method 2.6 on a 50000×100

Gaussian system defined by A with aij ∼ N (0, 1), then normalized. The system is corrupted in

randomly selected right-hand side entries with random integers in [1, 5] so that ε∗ = 1. For these

plots and experiments, d = s. The upper left image of Figure 2.15 plots the k∗ values defined

in Lemma 2.2.3 for this system, and the upper middle image plots the theoretically guaranteed

probability of selecting all s corrupted equations in a single window. The upper right image of

Figure 2.15 plots the theoretically guaranteed probability of selecting all s corrupted equations in

one window out of the W = bm−ns c, while the lower left image plots the ratio of successful trials,

in which all s corrupted equations were selected in one window of the W , out of 100 trials. The

lower right plot of Figure 2.15 plots how this ratio changes as the number of RK iterations, k, in

each window varies. Finally, Figure 2.16 plots the ratio of successful trials, in which all s corrupted

equations were selected after all W = bm−ns c windows, out of 100 trials as one varies δ (left) and k

(right). We note that the lower bounds on the probability of successfully detecting all corrupted

equations in one window are quite pessimistic; experimentally (in the lower left plot) we see that

Method 2.6 is able to detect all corruption for much larger numbers of corrupted equations, s,
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Figure 2.15. Plots for Method 2.6 on 50000× 100 Gaussian system (normalized).
Upper left: k∗; upper middle: lower bound on probability of detecting all corruption
in single window; upper right: lower bound on probability of detecting all corruption
in one out of all windows; lower: average ratio of detecting all corruption in one out
of all windows for choice of δ (left) or k (right).

than predicted theoretically (in the upper right plot). Additionally, we note that experimentally,

successfully detecting the corrupted equations does not appear to depend upon δ. For all 0 < δ < 1,

the k∗ value defined in Lemma 2.2.3 appears to be large enough to guarantee convergence within

the detection horizon.

In Figure ??, we briefly explore the theoretical guarantees for Method 2.7 given in Theorem 2.2.5,

and the empirical behavior of this method. These plots are for a 50000 × 100 Gaussian system

(normalized) with various number, s, of corrupted equations. We randomly sample s entries of the

right hand side vector b and corrupt them by adding 1, so ε∗ = 1. The plot on the left of Figure ??

plots the lower bound on the probability of selecting all corrupted equations given in Theorem 2.2.5

for W = 2, d = ds/2e, and k∗ as given in Lemma 2.2.3. Meanwhile in the middle and right plots

of Figure ??, we plot the average fraction of corrupted equations recorded for Method 2.7 with
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Figure 2.16. Plots for Method 2.6 on 50000×100 Gaussian system (normalized) with
various number of corrupted equations, s. Left: Experimental ratio of successfully
detecting all s corrupted equations after all W = bm−ns c windows for choice of δ;
right: Experimental ratio of successfully detecting all s corrupted equations after all
W = bm−ns c windows for choice of k (number of RK iterations per window).
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Figure 2.17. Plots for Method 2.7 on 50000× 100 Gaussian system (normalized).
Left: Bound given in Theorem 2.2.5; middle and right: Average fraction of corrupted
equations detected after W = ds/de windows recording d = ds/10e equations per
window varying δ (middle) and k (right).

W = ds/de and d = ds/10e for 100 trials. The middle plot has k∗ (as given in Lemma 2.2.3) RK

iterations per window for varying δ, while the right plot has varying k (number of RK iterations

per window). Note that this experiment is different from the others we present in this section

as we display the average fraction of corrupted equations recorded over 100 trials, rather than

the fraction of trials which detected all corrupted equations. We note that the theoretical bound

plotted on the left of Figure ?? is even more pessimistic than that of Method 2.6, but meanwhile

the empirical performance of Method 2.7 plotted in the middle and right of Figure ?? is even better
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than that seen for Method 2.6. For this reason, we do not plot these bounds (Theorem 2.2.5) or the

performance of Method 2.7 for additional systems as we expect the results to trend similarly for

other systems.

The figures for Method 2.6 mentioned above are recreated for a system whose rows are more

correlated (A ∈ R50000×100 with aij ∼ N (1, 0.5) then normalized) in Figures 2.18 and 2.19. The

system is corrupted in randomly selected right-hand side entries with random integers in [1, 5] so

that ε∗ = 1. For these plots and experiments, d = s. The upper left image of Figure 2.18 plots the

k∗ values defined in Lemma 2.2.3 for this system, and the upper middle image plots the theoretically

guaranteed probability of selecting all s corrupted equations in a single window of Method 2.6.

The upper right image of Figure 2.18 plots the theoretically guaranteed probability of selecting

all s corrupted equations in one window out of the W = bm−ns c, while the lower left image plots

the ratio of successful trials, in which all s corrupted equations were selected in one window of

the W , out of 100 trials. The lower right plot of Figure 2.18 plots how this ratio changes as the

number of RK iterations, k, in each window varies. Finally, Figure 2.19 plots the ratio of successful

trials, in which all s corrupted equations were selected after all W windows, out of 100 trials as

one varies δ (left) and k (right). We note that the discrepancy between the lower bound on the

probability of successfully detecting all corrupted equations in one window (upper right plot) and

the experimental rate of detecting all corruption (lower left plot) is even larger than in the case of

Gaussian systems.

First, note that k∗, as given in Lemma 2.2.3, depends very weakly upon s. In the upper left plots

of Figures 2.15 and 2.18, the values of k∗ plotted are very slightly different for different values

of s (the line thickness makes these distinct lines appear as one). Note that the definition of k∗

(the theoretically required number of RK iterations to reach the detection horizon) is defined by

the theoretical convergence rate which can be quite pessimistic. As has been seen in the lower

right plots of Figures 2.15 and 2.18, and in the right plots of Figures 2.16 and 2.19, detection can

be successful with a significantly smaller choice of k. Note that in Figure 2.15, the theoretically

required k∗ value is between 600 and 1400 but k > 500 seems to perform well. Likewise, in Figure

2.18, the theoretically required k∗ value is between 3000 and 8000 but k > 500 seems to perform
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Figure 2.18. Plots for Method 2.6 on 50000× 100 correlated system (normalized).
Upper left: k∗; upper middle: lower bound on probability of detecting all corruption
in single window; upper right: lower bound on probability of detecting all corruption
in one out of all windows; lower: average ratio of detecting all corruption in one out
of all windows for choice of δ (left) or k (right).

well. It is unsurprising that this bound is even more pessimistic for the correlated system, as the

conditioning of a correlated system causes the RK convergence guarantee to be quite poor, while

experimentally we see a much faster rate of convergence.

Implementation considerations. There are several options for d, some more practically feasible than

others. Our theoretical results are probabilistic guarantees for Method 2.6 with d ≥ s, which of

course cannot be known in practice, as well as for Method 2.7 with d ≥ 1, which is practical, but

the method is more expensive computationally. In practice, one could choose d as the user estimate

for s.

The choice of d and W are complementary in that increasing d decreases W (since one may have

less windows if in each window more equations are selected). In selecting d and W , we wish to
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Figure 2.19. Plots for Method 2.6 on 50000× 100 correlated system (normalized)
with various number of corrupted equations, s. Left: Experimental ratio of success-
fully detecting all s corrupted equations after all W = bm−ns c windows for choice of
δ; right: Experimental ratio of successfully detecting all s corrupted equations after
all W = bm−ns c windows for choice of k (number of RK iterations per window).

balance the desire to increase d in order to record all of the corrupted equations when we have a

successful window with the fact that as d grows, we can have less windows. We never discard or

record more than m− n of the constraints, as at the end of any method, we wish to have a full rank

linear system of equations remaining whose solution is x∗, the pseudo-solution. Thus, for any d we

may not run more than W = bm−nd c windows. However, in practice, this choice of W may be larger

than is necessary. This is explored in Figures 2.20 and 2.21. In the experiment producing Figure

2.20, we ran W = bm−nd c windows of Method 2.6 with k∗ (defined in Lemma 2.2.3) RK iterations

selecting d equations each window, and record the ratio of successful trials, which selected all s

corrupted equations after all windows, out of 100 trials. The figure on the left shows the results for

a Gaussian system, while the figure on the right shows the results for a correlated system. In the

experiment producing Figure 2.21, we ran W ≤ bm−ns c windows of Method 2.6 with k∗ (defined in

Lemma 2.2.3) RK iterations selecting s equations each window, and record the ratio of successful

trials, which selected all s corrupted equations after all windows, out of 100 trials. The figure on

the left is for a Gaussian system, while the figure on the right is for a correlated system. Both are

corrupted with random integers in [1, 5] in randomly selected entries of b, so ε∗ = 1.
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Figure 2.20. Plots for Method 2.6 for varying d. Average ratio of detecting all
corruption after all windows on 50000× 100 Gaussian system (left) or 50000× 100
correlated system (right).
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Figure 2.21. Plots for Method 2.6 for varying W . Average ratio of detecting all
corruption after all windows on 50000× 100 Gaussian system (left) or 50000× 100
correlated system (right).

Method 2.5, despite not having independent windows, performs well in practice as is seen in Figure

2.22. In this experiment, we perform W = bm−ns c windows of Method 2.5 with k RK iterations,

removing s equations each window. The plot shows the ratio of successful trials, in which all s

corrupted equations are removed after all W windows, out of 100 trials. The method is run on a

Gaussian system which is corrupted by random integers in [1, 5] in randomly selected entries of b,

so ε∗ = 1.
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Figure 2.22. Experimental ratio of success of removing (Method 2.5) all s corrupted
equations after all W = bm−ns c windows for 50000 × 100 Gaussian system with s
corrupted equations and choice of k.

Real Data Experiments. We additionally test the methods on real data. Our first experiments are

on tomography problems, generated using the MATLAB Regularization Toolbox by P.C. Hansen

(http://www.imm.dtu.dk/~pcha/Regutools/) [Han07]. In particular we present a 2D tomography

problem Ax = b for an m × n matrix with m = fN2 and n = N2. Here A corresponds to the

absorption along a random line through an N ×N grid. In our experiments we set N = 20 and the

oversampling factor f = 3. This yielded a matrix A with condition number κ(A) = 2.08. As the

resulting system was consistent, we randomly sampled s = 100 constraints uniformly from among

the rows of A and corrupted the right-hand side vector b by adding 1 in these entries, so ε∗ = 1.

This corrupted system has k∗ = 66334 (as given in Lemma 2.2.3). Figure 2.23 contains the average

fraction of the s = 100 corrupted equations detected or removed for Methods 2.6 (left) and 2.5

(right) after all W = bm−nd c windows for various values of k (RK iterations per window) for 100

trials.

We also generated corrupted data sets using the Wisconsin (Diagnostic) Breast Cancer data set,

which includes data points whose features are computed from a digitized image of a fine needle

aspirate (FNA) of a breast mass and describe characteristics of the cell nuclei present in the

image [Lic13]. This collection of data points forms our matrix A ∈ R699×10, we construct b to form
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Figure 2.23. Plots for 1200 × 400 tomography system with s = 100 corrupted
equations. Left: average fraction of corrupted equations detected in 100 trials after all
W = bm−nd c windows of Method 2.6; right: average fraction of corrupted equations

removed in 100 trials after all W = bm−nd c windows of Method 2.5.

a consistent system, and then corrupt a random selection of 100 entries of the right-hand side by

adding 1, so ε∗ = 1. This corrupted system has k∗ = 3432 (as given in Lemma 2.2.3). Figure 2.24

contains the average fraction of the s = 100 corrupted equations detected or removed for Methods

2.6 (left) and 2.5 (right) after all W = bm−nd c windows for various values of k (RK iterations per

window) for 100 trials.
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Figure 2.24. Plots for 699× 10 system defined by Wisconsin (Diagnostic) Breast
Cancer data set with s = 100 corrupted equations. Left: average fraction of corrupted
equations detected in 100 trials after all W = bm−nd c windows of Method 2.6; right:

average fraction of corrupted equations removed in 100 trials after all W = bm−nd c
windows of Method 2.5.

2.3. Sampling Kaczmarz-Motzkin Method

Despite the similarity between the Kaczmarz and Motzkin methods (the difference only being in

the row selection criterion), work on these approaches has remained mostly disjoint. One main

contribution of this thesis is a family of methods, the Sampling Kaczmarz-Motzkin (SKM) methods,

which are intended to balance the pros and cons of these two related methods [DLHN17]. Namely,

Motzkin’s method forms iterates whose distance to the polyhedral solution space are monotonically

decreasing; however, the time required to choose the most violated hyperplane in each iteration is

costly. Conversely, the Randomized Kaczmarz method has a very inexpensive cost per iteration;

however, the method has slow convergence when many of the constraints are satisfied. Our methods

still have a probabilistic choice, like in randomized Kaczmarz, but make strong use of the maximum

violation criterion within this random sample of the constraints. Our method is easily seen to

interpolate between what was proposed in [LL10] and in [MS54]. Note that the description of

SKM in Section 1.2.2.3 presented the method with projection parameter , λ = 1. Here we consider

the more general family of methods which allow for under (λ < 1) and over-projection (λ > 1).

Pseudo-code for this algorithm is presented in Method 2.8 and MATLAB code for this algorithm

may be found in Appendix A.
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Method 2.8 Sampling Kaczmarz-Motzkin method

1: procedure SKM(A,b,x0, λ, β, k)

2: for j = 1, 2, ..., k do

3: Choose a random sample of β constraints, τj , uniformly from among the rows of A, [m].

4: xj = xj−1 − λ
(aTij

xj−1−bij )+

‖aij ‖2
aij where ij ∈ argmax

i∈τj
aTi xj−1 − bi.

5: end for

6: return xk

7: end procedure

PA,b
x0

x1

PA,b
x0

x1 = x2

PA,b
x0

x2

x3

Figure 2.25. An example of the iterates formed by the SKM method with λ > 1
on a feasible LF.

For clarity, we include an example of several iterations of the SKM method on an LF in Figure

2.25. Each image illustrates the projection xk−1 to xk in a dashed line. The lines surrounding the

polyhedral feasible region, PA,b represent the boundary hyperplanes of the halfspaces defining PA,b.

The lines are dotted if the constraint defining the corresponding halfspace is satisfied by the iterate

xk−1, and solid if the constraint defining the corresponding halfspace is violated by the iterate xk−1.

The lines representing the hyperplanes bounding the halfspaces defined by the randomly selected

constraints, aTi x ≤ bi for i ∈ τk are shown in bold. The constraint selected from among this random

sample (if any are violated) is shown in extra bold.

Remark: the SKM method with β = m recovers the Motzkin methods, while the SKM method

with β = 1 gives the randomized Kaczmarz methods.

2.3.1. Convergence Rate. We now state our first main result. We show that the SKM

methods satisfy a linear rate of convergence and with a potential acceleration depending upon the

number of satisfied constraints.
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Theorem 2.3.1. Consider a normalized system with ‖ai‖2 = 1 for all i ∈ [m]. If the feasible

region, PA,b, is nonempty then the SKM method (Method 2.8) with samples of size β and projection

parameter λ converges at least linearly in expectation and the bound on the rate depends on the

number of satisfied constraints in the system Ax ≤ b. More precisely, let sk−1 be the number of

satisfied constraints after iteration k − 1 and Vk−1 = max{m− sk−1,m− β + 1}; then, in the kth

iteration,

E[d(xk, PA,b)2] ≤
(

1− 2λ− λ2

Vk−1L
2
2

)
d(xk−1, PA,b)2 ≤

(
1− 2λ− λ2

mL2
2

)k
d(x0, PA,b)2.

We show that the SKM methods enjoy a linear rate of convergence. We begin with a simple useful

observation.

Lemma 2.3.2. Suppose {ai}ni=1, {bi}ni=1 are real sequences so that ai+1 ≥ ai ≥ 0 and bi+1 ≥ bi ≥ 0.

Then
n∑
i=1

aibi ≥
n∑
i=1

ābi, where ā is the average ā =
1

n

n∑
i=1

ai.

Proof. Note that
n∑
i=1
aibi =

n∑
i=1
ābi +

n∑
i=1

(ai − ā)bi, so we need only show that
n∑
i=1

(ai − ā)bi ≥ 0,

which is equivalent to
n∑
i=1

(nai −
n∑
j=1

aj)bi ≥ 0, so we define the coefficients ci := nai −
n∑
j=1

aj . Now,

since {ai}ni=1 is increasing, there is some 1 < k < n so that ck ≤ 0 and ck+1 ≥ 0 and the ci are

increasing. Since {bi}ni=1 is non-negative and non-decreasing we have

n∑
i=1

cibi =

k∑
i=1

cibi +

n∑
i=k+1

cibi ≥
k∑
i=1

cibk +

n∑
i=k+1

cibk = bk

n∑
i=1

ci = 0.

Thus, we have
n∑
i=1
aibi =

n∑
i=1
ābi +

n∑
i=1

(ai − ā)bi ≥
n∑
i=1
ābi. �

Proof. (of Theorem 2.3.1 ) Write sj for the number of zero entries in the residual (Axj − b)+,

which correspond to satisfied constraints. Define Vj := max{m− sj ,m− β + 1}. Recalling that the

method defines xj+1 = xj −λ(Axj −b)+
i∗ai∗ where i∗ = argmax

i∈τj+1

{aTi xj − bi, 0} = argmax
i∈τj+1

(Axj −b)+
i ,

81



2.3. SAMPLING KACZMARZ-MOTZKIN METHOD

we have

d(xj+1, PA,b)2 = ‖xj+1 − PPA,b(xj+1)‖2 ≤ ‖xj+1 − PPA,b(xj)‖2 = ‖xj − λ(Axj − b)+
i∗ai∗ − PPA,b(xj)‖2

= ‖xj − PPA,b(xj)‖2 + λ2((Axj − b)+
i∗)

2‖ai∗‖2 − 2λ(Axj − b)+
i∗a

T
i∗(xj − PPA,b(xj)).

Since aTi∗(xj − PPA,b(xj)) ≥ aTi∗xj − bi∗ , we have that

d(xj+1, PA,b)2 ≤ d(xj , PA,b)2 + λ2((Axj − b)+
i∗)

2‖ai∗‖2 − 2λ(Axj − b)+
i∗(a

T
i∗xj − bi∗)

= d(xj , PA,b)2 − (2λ− λ2)((Axj − b)+
i∗)

2

= d(xj , PA,b)2 − (2λ− λ2)‖(Aτj+1xj − bτj+1)+‖2∞.(2.10)

Now, we take advantage of the fact that, if we consider the size of the entries of (Axj − b)+, we

can determine the precise probability that a particular entry of the residual vector is selected. Let

(Axj − b)+
ik

denote the (k + β)th smallest entry of the residual vector (i.e., if we order the entries of

(Axj − b)+ from smallest to largest, we denote by (Axj − b)+
ik

the entry in the (k + β)th position).

Each sample has equal probability of being selected,
(
m
β

)−1
. However, the frequency that each entry

of the residual vector will be expected to be selected (as argmax
i∈τj+1

aTi xj− bi) depends on its size. The

βth smallest entry will be selected from only one sample, while the m-th smallest entry (i.e., the

largest entry) will be selected from all samples in which it appears. Each entry is selected according

to the number of samples in which it appears and is largest. Thus, if we take expectation of both

sides (with respect to the probabilistic choice of sample, τj+1, of size β), then

E[‖(Aτj+1xj − bτj+1)+‖2∞] =
1(
m
β

)m−β∑
k=0

(
β − 1 + k

β − 1

)
((Axj − b)+

ik
)2(2.11)

≥ 1(
m
β

)m−β∑
k=0

m−β∑̀
=0

(
β−1+`
β−1

)
m− β + 1

((Axj − b)+
ik

)2(2.12)

=

m−β∑
k=0

1

m− β + 1
((Axj − b)+

ik
)2(2.13)

≥ 1

m− β + 1
min

{
m− β + 1

m− sj
, 1

}
‖(Axj − b)+‖22,(2.14)
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where (2.12) follows from Lemma 2.3.2, because {
(
β−1+k
β−1

)
}m−βk=0 is strictly increasing and {(Axj −

b)+
ik
}m−βk=0 is non-decreasing. Equality (2.13) follows from (2.12) due to the fact that

m−β∑̀
=0

(
β−1+`
β−1

)
=(

m
β

)
which is known as the column-sum property of Pascal’s triangle, among other names. Inequality

(2.14) follows from the fact that the ordered summation in (2.13) is at least m−β+1
m−sj of the norm of

the residual vector (since sj of the entries are zero) or is the entire residual vector provided sj ≥ β−1.

Thus, we have

E[d(xj+1, PA,b)2] ≤ d(xj , PA,b)2 − (2λ− λ2)E[‖(Aτj+1xj − bτj+1)+‖2∞]

≤ d(xj , PA,b)2 − 2λ− λ2

Vj
‖(Axj − b)+‖22 ≤

(
1− 2λ− λ2

VjL2
2

)
d(xj , PA,b)2.

Since Vj ≤ m in each iteration,

E[d(xj+1, PA,b)2] ≤
(

1− 2λ− λ2

mL2
2

)
d(xj , PA,b)2.

Thus, inductively, we get that

E[d(xk, PA,b)2] ≤
(

1− 2λ− λ2

mL2
2

)k
d(x0, PA,b)2.

�

Now, we have that the SKM methods will perform at least as well as the Randomized Kaczmarz

method in expectation; however, if we know that after a certain point the iterates satisfy some

of the constraints, we can improve our expected convergence rate guarantee. Clearly, after the

first iteration, if λ ≥ 1, in every iteration at least one of the constraints will be satisfied so we can

guarantee a very slightly increased expected convergence rate. However, we can say more based on

the geometry of the problem.

Lemma 2.3.3. The sequence of iterates, {xk} generated by an SKM method (Method 2.8) are

pointwise closer to the feasible polyhedron PA,b. That is, for all a ∈ PA,b, ‖xk − a‖ ≤ ‖xk−1 − a‖

for all iterations k.
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Proof. For a ∈ PA,b, ‖xk − a‖ ≤ ‖xk−1 − a‖ for all k since a ∈ PA,b ⊂ H≤aik ,bik and xk is the

projection of xk−1 towards or into the half-space H≤aik ,bik
(provided xk−1 6∈ H≤aik ,bik , otherwise the

inequality is true with equality). �

PA,b

a l ∈ X
ra

a′

ra′

S(a)

S(a′)

a ∈ PA,b

l ∈ X
l′

ra
ra

π

Figure 2.26. Left: image of a ∈ PA,b, ra and S(a) and l ∈ ∩a∈PA,bS(a) as defined

in Lemma 2.3.4. Right: image of l, l′ ∈ X contradicting the full-dimensionality of
PA,b.

Lemma 2.3.4. If PA,b is n-dimensional (full-dimensional) then the sequence of iterates {xk}

generated by an SKM method (Method 2.8) converge to a point l ∈ PA,b.

Proof. Let a ∈ PA,b. Note that the limit, limk→∞ ‖xk − a‖ =: ra exists since {‖xk − a‖} is

bounded and decreasing (with probability 1). Define

S(a) := {x : ‖x− a‖ = ra} and X := ∩
a∈PA,b

S(a).

Note that X is not empty since the bounded sequence {xk} must have a limit point, l, achieving

‖l− a‖ = ra. Moreover, suppose there were two such points, l, l′ ∈ X. Define π := {x : ‖l− x‖ =

‖l′ − x‖} to be the hyperplane of points equidistance between l, l′. Then for a ∈ PA,b, we have

l, l′ ∈ S(a). Hence, a ∈ π and we have that PA,b ⊂ π, which contradicts the full dimensionality of

PA,b. Thus X contains only one point, l, and it must be a limit point of {xk}. Now, since {xk} is

converging to PA,b (with probability one), we must have that l ∈ PA,b.
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Now, suppose that xk 6→ l (i.e., only a subsequence of {xk} converges to l). Thus, there exists an

ε > 0 so that for all K there exists k ≥ K with ‖xk − l‖ > ε. However, there exists a subsequence

of {xk} which is converging to l, so there must exist some K1 with ‖xK1 − l‖ < ε. Thus, at some

point the sequence ‖xk − l‖ must increase, which contradicts Lemma 2.3.3. Hence, xk → l. �

Lemma 2.3.5. Let l be the limit point of the {xk}. There exists an index K so that if aTj l < bj

then aTj xk ≤ bj for all k ≥ K.

Proof. This is obvious from xk → l. �

We would like to conclude with a small “qualitative” proposition that indicates there are two stages

of behavior of the SKM algorithms. After the K-th iteration the point is converging to a particular

face of the polyhedron. At that moment one has essentially reduced the calculation to an equality

system problem, because the inequalities that define the face of convergence need to be met with

equality in order to reach the polyhedron.

Proposition 2.3.6. If the feasible region PA,b is generic and nonempty (i.e., full-dimensional and

every vertex satisfies exactly n constraints with equality), then an SKM method (Method 2.8) with

samples of size β ≤ m−n will converge to a single face F of PA,b and all but the constraints defining

F will eventually be satisfied. Thus, the method is guaranteed an increased convergence rate after

some index K; for k ≥ K

E[d(xk, PA,b)2] ≤
(

1− 2λ− λ2

mL2
2

)K(
1− 2λ− λ2

(m− β + 1)L2
2

)k−K
d(x0, PA,b)2.

Proof. Since a generic polyhedron is full-dimensional, by Lemma 2.3.4, we have that the SKM

method iterates converge to a point on the boundary of PA,b, l. Now, since this l lies on a face of P

and P is generic, this face is defined by at most n constraints. By Lemma 2.3.5, there exists K so

that for k ≥ K at least m− n of the constraints have been satisfied. Thus, our proposition follows

from Theorem 2.3.1. �
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2.3.2. Finiteness. Our second main theoretical result notes that, for rational data, one can

provide a certificate of feasibility after finitely many iterations of SKM. Recall the definition of

the maximum violation of a point x ∈ Rn given in Section 1.2.2.3, θ(x) = max{0,max
i∈[m]
{aTi x− bi}}.

Additionally, recall the following lemma which demonstrates that to detect feasibility of an LF, one

need only find a certificate of feasibility, a point x so that θ(x) < 2−σA,b+1.

Lemma 2.3.7. If the polyhedron, PA,b, defined by the rational system, Ax ≤ b, is empty, then for

all x ∈ Rn, the maximum violation satisfies θ(x) ≥ 2−(σA,b)+1.

Our second main theorem demonstrates that we expect to detect feasibility of a feasible LF in finitely

many iterations of SKM and can bound the probability that an iterate will not be a certificate of

feasibility. Thus, if SKM does not provide a certificate of feasibility, this result provides a level of

confidence that the LF is infeasible.

Theorem 2.3.8. Suppose A,b are rational matrices and that we run an SKM method (Method

2.8) on the normalized system Ãx ≤ b̃
(

where ãi = 1
‖ai‖ai and b̃i = 1

‖ai‖bi

)
with x0 = 0. Suppose

the number of iterations k satisfies

k >

4σA,b − 4− log n+ 2 log

(
max
j∈[m]
‖aj‖

)
log

(
mL2

2

mL2
2−2λ+λ2

) .

If the system Ax ≤ b is feasible, the probability that the iterate, xk, is not a certificate of feasibility

is at most

max ‖aj‖ 22σA,b−2

n1/2

(
1− 2λ− λ2

mL2
2

)k/2
,

which decreases with k.

Now, we show that the general SKM method (when λ 6= 2) on rational data is finite in expecta-

tion.

We will additionally make use of the following lemma (which is key in demonstrating that Khachiyan’s

ellipsoidal algorithm is finite and polynomial-time [Kha79]) in our proof:
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Lemma 2.3.9. If the rational system Ax ≤ b is feasible, then there is a feasible solution x̂ whose

coordinates satisfy |x̂j | ≤ 2
σA,b

2n for j = 1, ..., n.

Using the bound on the expected distance to the solution polyhedron, PA,b, we can show a bound

on the expected number of iterations needed to detect feasibility (which does not depend on the

size of block selected).

Proof. (of Theorem 2.3.8) First, note that if P̃ := {x|Ãx ≤ b̃}, then PA,b = P̃ . Then, by

Lemma 2.3.9, if Ãx ≤ b̃ is feasible (so Ax ≤ b is feasible) then there is a feasible solution x̂ with

|x̂j | <
2σA,b
2n for all j = 1, 2, ..., n (here σA,b is the binary encoding length for the unnormalized A,b).

Thus, since x0 = 0,

d(x0, PA,b) = d(x0, P̃ ) ≤ ‖x̂‖ ≤ 2σA,b−1

n1/2
.

Now, define θ̃(x) to be the maximum violation for the new, normalized system Ãx ≤ b̃,

θ̃(x) := max{0,max
i∈[m]

ãTi x− b̃i} = max

{
0,max
i∈[m]

aTi x− bi
‖ai‖

}
.

By Lemma 2.3.7, if the system Ãx ≤ b̃ is infeasible (so Ax ≤ b is infeasible), then

θ̃(x) = max{0,max
i∈[m]

aTi x− bi
‖ai‖

} ≥
max{0,max

i∈[m]
aTi x− bi}

max
j∈[m]
‖aj‖

=
θ(x)

max
j∈[m]
‖aj‖

≥ 21−σA,b

max
j∈[m]
‖aj‖

.

When running SKM on Ãx ≤ b̃, we can conclude that the system is feasible when θ̃(x) < 2
1−σA,b

max
j∈[m]

‖aj‖ .

Now, since every point of PA,b is inside the half-space defined by {x|ãTi x ≤ b̃i} for all i = 1, · · · ,m,

we have θ̃(x) = max{0,max
i∈[m]

ãTi x− b̃i} ≤ d(x, PA,b). Therefore, if Ax ≤ b is feasible, then

E(θ̃(xk)) ≤ E(d(xk, PA,b)) ≤
(

1− 2λ− λ2

mL2
2

)k/2
d(x0, PA,b) ≤

(
1− 2λ− λ2

mL2
2

)k/2 2σA,b−1

n1/2
,

where the second inequality follows from Theorem 2.3.1 and the third inequality follows from Lemma

2.3.9 and the discussion above.
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Now, we anticipate to have detected feasibility when E(θ̃(xk)) <
2
1−σA,b

max
j∈[m]

‖aj‖ , which is true for

k >

4σA,b − 4− log n+ 2 log

(
max
j∈[m]
‖aj‖

)
log

(
mL2

2

mL2
2−2λ+λ2

) .

Furthermore, by Markov’s inequality (see e.g., [She02, Section 8.2]), if the system Ax ≤ b is feasible,

then the probability of not having a certificate of feasibility is bounded:

P
(
θ̃(xk) ≥

21−σA,b

max
j∈[m]

‖aj‖

)
≤ E(θ̃(xk))

2
1−σA,b

max
j∈[m]

‖aj‖

<

(
1− 2λ−λ2

mL2
2

)k/2
2
σA,b−1

n1/2

2
1−σA,b

max
j∈[m]

‖aj‖

=
22σA,b−2 max ‖aj‖

n1/2

(
1−2λ− λ2

mL2
2

)k/2
.

This completes the proof. �

2.3.3. Termination of SKM Reflection Method. Now, as Motzkin and Schoenberg [MS54]

showed that their method (with λ = 2) is finite, we show that SKM with λ = 2 is finite for full-

dimensional systems.

Theorem 2.3.10. When the polyhedron, PA,b is full-dimensional, SKM (Method 2.8) with λ = 2

terminates with a solution.

We prove this in a manner similar to [Agm54].

Proof. By way of contradiction, assume the sequence {xk} is infinite. By Lemma 2.3.4, we

have that the sequence {xk} converges to l ∈ PA,b. Since we assumed {xk} is infinite, we know that

xk 6∈ PA,b for all k. Thus, since xk → l ∈ PA,b, we have that l is on the boundary of PA,b. Now, since

limk→∞ xk = l and xk is obtained from xk−1 by reflection across the hyperplane Haik ,bik
, we find

that limk→∞ dist(l, Haik ,bik
) = 0. However, since the family of hyperplanes is finite, there is some

smallest N so that for k > N , dist(l, Haik ,bik
) = 0 and l ∈ Haik ,bik

. However, all xk are obtained

from xk−1 by reflection across the hyperplane Haik ,bik
. We have that for k > N , ‖xk− l‖ = ‖xN − l‖

since l ∈ Haik ,bik
which contradicts xk → l. Thus, {xk} is finite. �
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(0,−1)

(2α, 0)x1

x2

Figure 2.27. Telgen’s example that iterative projection methods are not polynomial.

Now, note that we have shown that the SKM reflection method (λ = 2) terminates with a solution,

but not that it is polynomially bounded. Telgen showed that Motzkin’s method with λ = 1 requires

exponentially many iterations on certain classes of problems [Tel82]. Of course, in the worst case,

these problems will then require exponentially many iterations by the Sampling Kaczmarz-Motzkin

method. We provide a figure of Telgen’s example in Figure 2.27.

2.4. Experimental Results

The final contribution of this subsection is a small computational study. The main purpose of our

experiments is not to compare the running times versus established methods. Rather, we wanted

to determine how our new algorithms compare with the classical algorithms of Agmon, Motzkin

and Schoenberg, and Kaczmarz. We examine how the sampling and projection parameters affect

the performance of SKM. We try different types of data, but we assume in most of the data that

the number of rows m is large, much larger than n. The reason is that this is the regime in which

the SKM methods are most relevant and often the only alternative. Iterative projection methods

are truly interesting in cases where the number of constraints is very large (possibly so large it is

unreadable in memory) or when the constraints can only be sampled due to uncertainty or partial

information. Such regimes arise naturally in applications of machine learning [CE14] and in online

linear programming (see [AWY14] and its references). Finally, it has already been shown in prior

experiments that, for typical small values of m,n where the system can be read entirely, iterative
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projection methods are not able to compete with the simplex method (see [BDJ14,HMSW53]).

Here we compare our SKM code with MATLAB’s interior-point methods and active set methods

code. We also compare SKM with another iterative projection method, the block Kaczmarz

method [NT13].

We implemented the SKM methods in MATLAB [MAT16] on a 32GB RAM 8-node cluster

(although we did not exploit any parallelization), each with 12 cores of Intel Xeon E5-2640 v2 CPUs

running at 2 GHz, and ran them on systems while varying the projection parameter, λ, and the

sample size, β. We divided our tests into three broad categories: random data, non-random data,

and comparisons to other methods. Our experiments focus on the regime m� n, since as mentioned

earlier, this is the setting in which iterative methods are usually applied; however, we see similar

behavior in the underdetermined setting as well.

2.4.1. Experiments on random data. First we considered systems Ax ≤ b where A has

entries consisting of standard normal random variables and b is chosen to force the system to have

a solution set with non-empty interior (we generated a consistent system of equations and then

perturbed the right hand side with the absolute value of a standard normal error vector). We

additionally considered systems where the rows of A are highly correlated (each row consists only of

entries chosen uniformly at random from [.9, 1] or only of entries chosen uniformly at random from

[−1,−.9]) and b is chosen as above. We vary the size of A ∈ Rm×n, which we note in each example

presented below.

In Figure 2.28, we provide experimental evidence that for each problem there is an optimal choice for

the sample size, β, in terms of computation. We measure the average computational time necessary

for SKM with several choices of sample size β to reach halting (positive) residual error 2−14 (i.e.,

‖(Axk − b)+‖ ≤ 2−14). Regardless of choice of projection parameter, λ, we see a minimum for

performance occurs for β between 1 and m.

For the experiments in Figures 2.29, 2.30, and 2.31, we fixed the projection parameter at λ = 1.6

(for reasons discussed below). On the left of Figure 2.30, we see the residual error decreases more

quickly per iteration as the sample size, β increases. However, on the right, when measuring the

computational time, SKM with β ≈ 5000 performs best.
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Figure 2.28. Left: Average comp. time for SKM on 40000× 100 Gaussian system
to reach residual error 2−14. Right: Average comp. time for SKM on 10000× 100
correlated random system to reach residual error.

Figure 2.29. Left: Iterations vs. residual error for SKM with various sample sizes
on 50000× 100 Gaussian system. Right: Time vs. residual error.

In Figure 2.31, we ran experiments varying the halting error and see that the sample size selection,

β, depends additionally on the desired final distance to the feasible region, PA,b. On the right, we

attempted to pinpoint the optimal choice of β by reducing the sample sizes we were considering.

Like [SV09], we observe that ‘overshooting’ (λ > 1) outperforms other projection parameters,

λ ≤ 1. In Figure 2.28, we see that the optimal projection parameter, λ is system dependent. For

the experiments in Figure 2.28, we ran SKM on the same system until the iterates had residual

error less than 2−14 and averaged the computational time taken over ten runs. The best choice of
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Figure 2.30. Left: Iterations vs. residual error for SKM with sample sizes from 50
to m on 50000× 100 Gaussian system. Right: Time vs. residual error.

λ differed greatly between the Gaussian random systems and the correlated random systems; for

Gaussian systems it was 1.4 < λ < 1.6 while for correlated systems it was λ = 2.

Our bound on the distance remaining to the feasible region decreases as the number of satisfied

constraints increases. In Figure 2.32, we see that the fraction of satisfied constraints initially

increased most quickly for SKM with sample size, 1 < β < m and projection parameter, λ > 1. On

the left, we show that SKM with β = m is faster in terms of number of iterations. However, on

the right, we show that SKM with 1 < β < m outperforms β = m in terms of time because of its

computational cost in each iteration.

2.4.2. Experiments on real data. We consider next some non-random, non-fabricated test

problems: support vector machine (SVM) linear classification instances and feasibility problems

equivalent to linear programs arising in well-known benchmark libraries.

We first consider instances that fit the classical SVM problem (see [CE14]). We used the SKM

methods to solve the SVM problem (find a linear classifier) for several data sets from the UCI

Machine Learning Repository [Lic13]. The first data set is the well-known Wisconsin (Diagnostic)

Breast Cancer data set, which includes data points (vectors) whose features (components) are

computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe

characteristics of the cell nuclei present in the image. Each data point is classified as malignant
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Figure 2.31. Left: Average comp. time for SKM on 50000× 100 Gaussian system
to reach various residual errors for β between 1 and m. Right: Average comp. time
for β between 1 and m/5.

Figure 2.32. Left: Iterations vs. fraction of contraints satisfied for SKM methods
on 50000× 100 Gaussian system. Right: Time vs. fraction of contraints satisfied.

or benign. The resulting solution to the homogenous system of inequalities, Ax ≤ 0 would ideally

define a hyperplane which separates given malignant and benign data points. However, this data set

is not separable. The system of inequalities has m = 569 constraints (569 data points) and n = 30

variables (29 data features). Here, SKM is minimizing the residual norm, ‖Axk‖ and is run until

‖Axk‖ ≤ 0.5. See Figure 2.33 for results of SKM runtime on this data set.

The second data set is a credit card data set, whose data points include features describing the

payment profile of a credit card user and the binary classification is for on-time payment or default
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Figure 2.33. Left: Breast Cancer Data SVM. Right: Credit Card Data SVM.

payment in a billing cycle [YL09]. The resulting solution to the homogenous system of inequalities

would ideally define a hyperplane which separates given on-time and default data points. However,

this data set is not separable. The system of inequalities has m = 30000 (30000 credit card user

profiles) and n = 23 (22 profile features). Here, SKM is run until ‖Axk‖/‖Ax0‖ ≤ 0.01. See Figure

2.33 for results of SKM runtime on this data set.

In the experiments, we again see that for each problem there is an optimal choice for the sample size,

β, in terms of smallest computation time. We measure the average computation time necessary for

SKM with several choices of sample size β to reach the halting (positive) residual error. Regardless

of choice of projection parameter, λ, we see again that best performance occurs for β between 1 and

m. Note that the curves are not as smooth as before, which we attribute to the wider irregularity

of coefficients, which in turn forces the residual error more to be more dependent on the actual

constraints.

We next implemented SKM on several Netlib linear programming (LP) problems [Net]. Each of

these problems was originally formulated as the LP min cTx subject to Ax = b, l ≤ x ≤ u with

optimum value p∗. We reformulated these problems as the equivalent linear feasibility problem

Ãx ≤ b̃ where
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Figure 2.34. Left: SKM behavior for Netlib LP adlittle. Right: SKM behavior for
Netlib LP agg

Ã =



A

−A

I

−I

cT


and b̃ =



b

−b

u

−l

p∗


.

See Figures 2.34, 2.35, 2.36, 2.37, and 2.38 for results of SKM runtime on these problems as we vary

β and λ. Once more, regardless of choice of projection parameter, λ, we see optimal performance

occurs for β between 1 and m.

It would be possible to handle these equalities without employing our splitting technique to generate

inequalities. This splitting technique only increases m (||A||2F ) and does not affect the Hoffman

constant, which is ||Ã−1||2 in this case. It may be useful to explore such an extension.

2.4.3. Comparison to existing methods. In Table 2.1, we investigate the performance

behavior of SKM versus interior-point and active-set methods on several Netlib LPs. For fairness of

comparison, we gauge our code written in MATLAB versus the MATLAB Optimization Toolbox

function fmincon. The function fmincon allows a user to select either an ‘interior-point’ algorithm

or an ‘active-set’ algorithm.
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Figure 2.35. Left: SKM behavior for Netlib LP blend. Right: SKM behavior for
Netlib LP bandm.

Figure 2.36. Left: SKM behavior for Netlib LP brandy. Right: SKM behavior for
Netlib LP degen2.

We first used fmincon to solve the feasibility problem as described in Section 2.4.2 by applying this

function to min 0 such that Ãx ≤ b̃. However, the interior-point method and active-set method

were mostly unable to solve these feasibility form problems. The interior-point algorithm was never

able to solve feasibility, due to the fact that the system of equations defined by the KKT conditions

in each iteration was numerically singular. Similarly, in most cases, the active-set method was

halted in the initial step of finding a feasible point. For fairness of comparison, we do not list these

results.
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Figure 2.37. Left: SKM behavior for Netlib LP finnis. Right: SKM behavior for
Netlib LP recipe.

Figure 2.38. Left: SKM behavior for Netlib LP scorpion. Right: SKM behavior for
Netlib LP stocfor1.

In Table 2.1, we list CPU timings for the MATLAB interior-point and active-set fmincon algorithms

to solve the original optimization LPs (min cTx such that Ax = b, l ≤ x ≤ u), and SKM to solve

the equivalent feasibility problem, Ãx ≤ b̃, as described in Section 2.4.2. Note that this is not

an obvious comparion as SKM is designed for feasibility problems, and in principle, the stopping

criterion may force SKM to stop near a feasible point, but not necessarily near an optimum. On

the other hand, interior point methods and active set methods decrease the value of the objective

and simultaneously solve feasibility. The halting criterion for SKM remains that max(Ãxk−b̃)

max(Ãx0−b̃)
≤ εerr

where εerr is the halting error bound listed for each problem in the table. The halting criterion
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Problem Title Dimensions Interior-Point SKM Active-Set εerr SKM λ SKM β

LP adlittle 389× 138 2.08 0.29 1.85 10−2 1.2 30

LP agg 2207× 615 109.54* 20.55 554.52* 10−2 1 100

LP bandm 1555× 472 27.21 756.71 518.44* 10−2 1.2 100

LP blend 337× 114 1.87 367.33 2.20 10−3 1.6 250

LP brandy 1047× 303 21.26 240.83 90.46 0.05 1 20

LP degen2 2403× 757 6.70 22.41 25725.23 10−2 1.4 100

LP finnis 3123× 1064 115.47* 13.76 431380.82* 0.05 1 50

LP recipe 591× 204 2.81 2.62 5.56 0.002 1.2 30

LP scorpion 1709× 466 11.80 22.22 10.38 0.005 1.6 200

LP stocfor1 565× 165 0.53 0.34 3.29 0.1 1.4 50

Table 2.1. CPU time comparisons for MATLAB methods solving LP and SKM
solving feasibility.

∗ indicates that the solver did not solve the problem to the desired accuracy due to reaching an upper limit on function evaluations of
100000

for the fmincon algorithms is that max(Axk−b,l−xk,xk−u)
max(Ax0−b,l−x0,x0−u) ≤ εerr and cTxk

cTx0
≤ εerr where εerr is the

halting error bound listed for each problem in the table. Each of the methods were started with the

same initial point far from the feasible region. The experiments show our SKM method compares

favorably with the other codes.

For the experiments in Table 2.1, the interior-point method was not able to solve for LP agg and

LP finnis before hitting the upper bound on function evaluations due to slow progression towards

feasibility. The active-set method was not able to solve for LP agg, LP bandm and LP finnis before

hitting the upper bound on function evaluations due to a very slow (or incomplete) initial step in

finding a feasible point. As mentioned before, the methods were initialized with a point far from

the feasible region which may have contributed to the interior-point and active-set methods poor

performances.

In Figures 2.39 and 2.40, we compare the SKM method to the block Kaczmarz (BK) method (with

randomly selected blocks). Here we solve only systems of linear equations, not inequalities, and we

consider only random data as our implemented block Kaczmarz method selects blocks at random.

We see that the performance of the block Kaczmarz method is closely linked to the conditioning of

the selected blocks, as the BK method must solve a system of equations in each iteration, rather

than one equation as for SKM.
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Figure 2.39. Comparison of SKM method runtimes with various choices of sample
size, β and block Kaczmarz method runtimes with various choices of block size on
different types of random systems. Left: Gaussian random system. Right: Correlated
random system with entries chosen uniformly from [0.9, 0.9 + 10−5].

For the Gaussian random data, the selected blocks are well-conditioned and with high probability,

the block division has formed a row-paving of the matrix. Here we see that BK outperforms SKM.

However, when we consider correlated data instead, the behavior of BK reflects the poor conditioning

of the blocks. In the three included figures, we test with correlated matrices with increasingly poorly

conditioned blocks. If the blocks are numerically ill-conditioned, SKM is able to outperform BK. For

systems of equations in which blocks are well conditioned and easy to identify, BK has advantages

over SKM. However, if you are unable or unwilling to find a good paving, SKM can be used and is

able to outperform BK. When BK is used with inequalities, a paving with more strict geometric

properties must be found, and this can be computationally challenging, see [BN] for details. SKM

avoids this issue.

2.4.4. Remarks on Parameter Selection.

2.4.4.1. Choice of β. As observed by Theorem 2.3.1, the sample size β used in each iteration of

SKM plays a role in the convergence rate of the method. By the definition of Vk−1 in Theorem 2.3.1

and by the bound in Proposition 2.3.6 the choice β = m yields the fastest convergence rate. Indeed,

this coincides with the classical method of Motzkin; one selects the most violated constraint out

of all the constraints in each iteration. However, it is also clear that this choice of β is extremely
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Figure 2.40. Left: Correlated random system with entries chosen uniformly from
[0.9, 0.9 + 10−16]. Right: Correlated random system with entries chosen uniformly
from [0.9, 0.9 + 10−20].

costly in terms of computation, and so the more relevant question is about the choice of β that

optimizes the convergence rate in terms of total computation.

To gain an understanding of the tradeoff between convergence rate and computation time in terms

of the parameter β, we consider a fixed iteration j and for simplicity choose λ = 1. Denote the

residual by r := (Axj − b)+, and suppose s inequalities are satisfied in this iteration; that is, r has

s zero entries. Write rτj for the portion of the residual selected in Step 3 of SKM (so |τj | = β).

Then as seen from Equation (2.10) in the proof of Theorem 2.3.1, the expected improvement (i.e.,

d(xj , PA,b)− d(xj+1, PA,b)) made in this iteration is given by E‖rτj‖2∞. Expressing this quantity

as in (2.11) along with Lemma 2.3.2, one sees that the worst case improvement will be made

when the m − s non-zero components of the residual vector are all the same magnitude (i.e.,

E‖rτj‖∞ ≥ 1
m−s‖r‖1). We thus focus on this scenario in tuning β to obtain a minimax heuristic

for the optimal selection. We model the computation count in a fixed iteration as some constant

computation time for overhead C plus a factor that scales like nβ, since checking the feasibility

of β constraints takes time O(nβ). We therefore seek a value for β that maximizes the ratio of

improvement made and computation cost:

(2.15) gain(β) :=
E‖rτj‖2∞
C + cnβ

,
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when the residual r consists of m− s non-zeros of the same magnitude. Call the support of the

residual T := supp(r) = {i : ri 6= 0}. Without loss of generality, we may assume that the magnitude

of these entries is just 1. In that case, one easily computes that

E‖rτj‖2∞ = P(T ∩ τj 6= ∅) =


1−

(
s

β

)
(
m

β

) ≈ 1−
(
s
m

)β
if β ≤ s,

1 if β > s,

where we have used Stirling’s approximation in the first case.

We may now plot the quantity

(2.16) gain(β) ≈
1−

(
s
m

)β
C + cnβ

as a function of β, for various choices of s. Figure 2.41 shows an example of this function for some

specific parameter settings. We see that, as in the experiments of Sections 2.4.1 and 2.4.2, optimal

β selection need not necessarily be at either of the endpoints β = 1 or β = m (corresponding to

classical randomized Kaczmarz and Motzkin’s method, respectively). In particular, one observes

that as the number of satisfied constraints s increases, the optimal size of β also increases. This of

course is not surprising, since with many satisfied constraints if we use a small value of β we are

likely to see mostly satisfied constraints in our selection and thus make little to no progress in that

iteration. Again, Figure 2.41 is for the worst case scenario when the residual has constant non-zero

entries, but serves as a heuristic for how one might tune the choice of β. In particular, it might be

worthwhile to increase β throughout the iterations.

2.4.4.2. Choice of λ. Additionally, the optimal choice of projection parameter λ is system

dependent (e.g., for certain systems, one should choose λ = 1 while for certain full-dimensional

systems, one should choose λ > 1). Theoretically, the convergence rate we provided in Theorem 2.3.1

depends upon λ in a weak way; one would always choose λ = 1. However, we see experimentally

that overshooting outperforms other choices of λ. Additionally, one can easily imagine that for

systems whose polyhedral feasible region is full-dimensional, choosing λ > 1 will outperform λ ≤ 1,

as eventually, the iterates could ‘hop’ into the feasible region. The proof of Proposition 2.3.6 suggests
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Figure 2.41. The quantity gain(β) as in (2.16) as a function of β for various
numbers of satisfied constraints s. Here we set m = 200, n = 10, c = 1 and C = 100.
Optimal values of β maximize the gain function.

a possible reason why we see this in our experiments. This proposition is a consequence of the fact

that if the method does not terminate then it will converge to a unique face of P . If λ > 1, then

this face cannot be a facet of P , as if the method converged to such a face, it would eventually

terminate, ‘hopping’ over the facet into P . Thus, for λ > 1, the number of possible faces of P that

the sequence of iterates can converge to is decreased. Further work is needed before defining the

optimal choice of λ or β for any class of systems.
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CHAPTER 3

Wolfe’s Methods for Minimum Norm Point

Now we present our study of one of the most famous algorithms for the minimum norm point problem,

Wolfe’s algorithm. Wolfe’s method is a combinatorial method for solving the minimum norm point

problem over a polytope, P = conv(p1,p2, ...,pm) ⊂ Rn. It was introduced by P. Wolfe in [Wol76].

For convenience of the reader, we first state some definitions and elementary results, and follow with

a brief description of Wolfe’s method. We then discuss similar methods in convex optimization and

present some related results. We will then describe our exponential example in detail, proving the

exponential behavior of Wolfe’s method as stated in Theorem 1.3.5 [DLHR17,DLHR18].

3.1. Background

Wolfe’s method iteratively solves MNP over a sequence of subsets of no more than n + 1 affinely

independent points from p1, ...,pm and it checks to see if the solution to the subproblem is a solution

to the problem over P using the following lemma due to Wolfe. We call this Wolfe’s criterion.

Lemma 3.1.1 (Wolfe’s criterion [Wol76]). Let P = conv(p1,p2, ...,pm) ⊂ Rn, then x ∈ P is the

minimum norm point in P if and only if

xTpj ≥ ‖x‖22 for all j ∈ [m].

Note that this tells us that if there exists a point pj so that xT pj < ‖x‖22 (i.e., the hyperplane

{y : xTy = ‖x‖22} does not weakly separate P from 0) then x is not the minimum norm point in P .

We may check optimality of a given point x by simply computing inner products and comparing to

‖x‖2, so this may be done in strongly-polynomial time. We say that pj violates Wolfe’s criterion and

using this point should decrease the minimum norm point of the current subproblem. See Figure

3.1 for an illustration.
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p1

p2

p3

x

p5

p4

P

0

{y : xTy = ‖x‖2}

Figure 3.1. A visualization of Wolfe’s criterion. Note that {y : xTy = ‖x‖2}
weakly separates P from 0, so x is the minimum norm point in P .

It should be observed that just as Wolfe’s criterion is a rule to decide optimality over conv(P ), one

has a very similar rule for deciding optimality over the affine hull, aff(P ). We state and prove this

result below since we do not know of a reference.

Lemma 3.1.2 (Wolfe’s criterion for the affine hull). Let P = {p1,p2, ...,pn} ⊆ Rd be a non-empty

finite set of points. Then x ∈ aff(P ) is the minimum norm point in aff(P ) iff for all pi ∈ P we

have pTi x = ‖x‖22.

Proof. Let p =
∑n

i=1 ρipi with
∑n

i=1 ρi = 1 be an arbitrary point in aff(P ) and suppose

pTi x = ‖x‖22 for i = 1, 2, ..., n. We have

pTx =
n∑
i=1

ρip
T
i x =

n∑
i=1

ρi‖x‖22 = ‖x‖22.

Then 0 ≤ ‖p− x‖22 = ‖p‖22 − 2pTx + ‖x‖22 = ‖p‖22 − ‖x‖22 and so ‖x‖22 ≤ ‖p‖22.

Suppose x ∈ aff(P ) is the minimum norm point in aff(P ). Suppose that xT (pi − x) 6= 0 for some

i ∈ [n]. First, consider the case when xT (pi − x) > 0 and define 0 < ε < 2xT (pi−x)
‖pi−x‖22

. Then we have

‖(1 + ε)x− εpi‖22 = ‖x+ ε(x− pi)‖22 = ‖x‖22 − 2εxT (pi − x) + ε2‖pi − x‖22 < ‖x‖22

since 0 < ε2‖pi−x‖22 < 2εxT (pi−x). This contradicts our assumption that x is the minimum norm

point in aff(P ). The case when xT (pi − x) < 0 is likewise proved by considering ‖(1− ε)x + εpi‖22
with 0 < ε < −2xT (pi−x)

‖pi−x‖22
. Thus, we have that xT (pi − x) = 0. �
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s1 s2

0

s1 s2

s3

0
s2s1

0

Figure 3.2. Left: example of corral. Middle: example of corral. Right: not a corral.

We say a set of affinely independent points S is a corral if the affine minimizer of S lies in the

relative interior of conv(S). See Figure 3.2 for two examples of corrals and one non-example in R2.

Note that singletons are always corrals. Carathéodory’s theorem (Theorem 1.1.3) implies that the

minimum norm point of P will lie in the convex hull of some corral of points among p1, ...,pn. The

goal of Wolfe’s method is to search for a corral containing the (unique) minimizing point. Wolfe’s

method operates over subsets of points, checking to see first if they are a corral and then checking to

see if they are the optimal corral. Both of these operations are simple and require time polynomial

in the dimension and number of points.

Before moving on, we wish to clarify several questions regarding the definition of corral. In Wolfe’s

original paper [Wol76], he defined a corral to be a set of affinely independent points, S, whose

convex minimizer lies in the relative interior of conv(S). However, in the pseudo-code for his method,

he implemented checking whether the current set is a corral by solving for the affine minimizer and

checking to see if it lies in the relative interior of conv(S). We comment that these two definitions

are in fact the same and provide a proof below in Lemma 3.1.3. Note that computing the affine

minimizer in order to check if the current set is a corral requires only solving a system of linear

equations (Chapter 4, Lemma 4.1.1); this is exploited by Wolfe’s method.

Lemma 3.1.3. The convex minimizer of a set {p1,p2, ...,pm} lies in relint(conv(p1,p2, ...,pm))

if and only if the affine minimizer of the points lies in relint(conv(p1,p2, ...,pm)).

Proof. Let x be the convex minimizer of {p1,p2, ...,pm} and y be the affine minimizer. First,

note that relint(conv(p1,p2, ...,pm)) ⊆ conv(p1,p2, ...,pm) and ‖y‖ ≤ ‖x‖ since conv(p1, ...,pm) ⊆

aff(p1,p2, ...,pm). If y ∈ relint(conv(p1,p2, ...,pm)) then x = y.

Assume y 6∈ relint(conv(p1,p2, ...,pm)) and suppose x ∈ relint(conv(p1,p2, ...,pm)). Note that

there is some point which is a strict convex combination of x and y which lies in conv(p1,p2, ...,pm);
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p3 = (2, 4)

p1 = (0, 1)

p2 = (−1,−2)

0

Figure 3.3. An example showing that a requiring the affine minimizer of {p1,p2,p3}
to lie in the convex hull will not ensure that the set is of minimum dimension.

that is, there exists 0 < α < 1 so that αx + (1 − α)y ∈ conv(p1,p2, ...,pm). Finally, note that

‖y‖ < ‖y‖. Thus, ‖αx + (1− α)y‖ ≤ α‖x‖+ (1− α)‖y‖ < ‖x‖ which contradicts the assumption

that x was the convex minimizer. �

Finally, note that the definition of a corral requires that the affine minimizer lies in the relative

interior of the convex hull, and not just within the convex hull, so that corrals will be of minimal

size and without unnecessary points. This ensures that the corral of points considered last by

Wolfe’s method is a subset of points on the face of minimal dimension that contains the minimum

norm point. Consider the set of points in Figure 3.3. Note that the affine minimizer and the convex

minimizer are the origin. The affine minimizer lies within the convex hull, but the set {p1,p2,p3}

does not lie in the face of minimum dimension that contains the minimizer. Requiring the affine

minimizer to lie within the relative interior of the convex hull ensures that the corral contains no

points unnecessary to express the affine minimizer as a convex combination.
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3.2. Wolfe’s Method

The pseudo-code in Method 3.9 below presents the iterations of Wolfe’s method. It is worth noticing

that some steps of the method can be implemented in more than one way (for example, the choice of

the initial point in line 2) and Wolfe proved that all of them lead to a correct, terminating algorithm.

We therefore use the word method to encompass all these variations and we discuss specific choices

when they are relevant to our analysis of the method. MATLAB code for this algorithm may be

found in Appendix A.

Method 3.9 Wolfe’s Method [Wol76]

1: procedure Wolfe(p1,p2, ...,pm)

2: Initialize x = pi for some i ∈ [m], initial corral C = {pi}, I = {i}, λ = ei, α = 0.

3: while x 6= 0 and there exists pj with xTpj < ‖x‖22 do

4: Add pj to the potential corral: C = C ∪ {pj}, I = I ∪ {j}.

5: Find the affine minimizer of C, y = argminy∈aff(C)‖y‖2, and the affine coefficients, α.

6: while y is not a strict convex combination of points in C; αi ≤ 0 for some i ∈ I do

7: Find z, closest point to y on [x,y]∩conv(C); z = θy+(1−θ)x, θ = mini∈I:αi≤0
λi

λi−αi .

8: Select pi ∈ {pj ∈ C : θαj + (1− θ)λj = 0}.

9: Remove this point from C; C = C − {pi}, I = I − {i}, αi = 0, λi = 0.

10: Update x = z and the convex coefficients, λ, of x for C; solve x =
∑

pi∈C λipi for λ.

11: Find the affine minimizer of C, y = argminy∈aff(C)‖y‖2 and affine coefficients, α.

12: end while

13: Update x = y and λ = α.

14: end while

15: Return x.

16: end procedure

The subset of points being considered as the potential corral is maintained in the set C. Iterations of

the outer-loop, where points are added to C, are called major cycles and iterations of the inner-loop,

where points are removed from C, are called minor cycles. The potential corral, C, is named so

because at the beginning of a major cycle it is guaranteed to be a corral, while within the minor

cycles it may or may not be a corral. Intuitively, a major cycle of Wolfe’s method inserts an
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improving point which violates Wolfe’s criterion (pj so that xTpj < ‖x‖22) into C, then the minor

cycles remove points until C is a corral, and this process is repeated until no points are improving

and C is guaranteed to be a corral containing the minimizer. As the minor cycles remove points

from C, the method checks whether C is a corral by computing the affine minimizer and checking

to see if it lies in the relative interior of the convex hull of C. Computing the affine minimizer (lines

5 and 11 of Method 3.9) only requires solving a system of linear equations (see Chapter 4, Lemma

4.1.1).

It can be shown that this method terminates because the norm of the convex minimizer of the

corrals visited monotonically decreases and thus, no corral is visited twice [Wol76]. Like [CJK14],

we sketch the argument in [Wol76]. One may see that the norm monotonically decreases by noting

that the convex minimizer over the polytope may result from one of two updates to x, either at

the end of a major cycle or at the end of a minor cycle. Let C be the corral at the beginning of a

major cycle (line 3 of Method 3.9) and let x be the current minimizer, then the affine minimizer y

has norm strictly less than that of x by Lemma 3.1.2, uniqueness of the affine minimizer and the

fact that pTi x < ‖x‖22 where pi is the added point. Now, either x is updated to y or a minor cycle

begins. Let S be the potential corral at the beginning of a minor cycle (line 6 of 3.9), let x be the

current convex combination of points of S and let y be the affine minimizer of S. Note that z is

a proper convex combination of x and y and since ‖y‖2 < ‖x‖2, we have ‖z‖2 < ‖x‖2. Thus, we

see that every update of x decreases its norm. Note that the number of minor cycles within any

major cycle is bounded by n+ 1, where n is the dimension of the space. Thus, the total number of

iterations is bounded by the number of corrals visited multiplied by n+ 1. It is nevertheless not

clear how the number of corrals grows, beyond the bound of
∑n+1

i=1

(
m
i

)
.

Within the method, there are two moments at which one may choose which points to add to the

potential corral. Observe that at line 2 of the pseudocode, one may choose which initial point to add

to the potential corral. In this thesis we will only consider one initial rule, which is to initialize with

the point of minimum norm. Observe that at line 4 of the pseudocode, there are several potential

choices of which point to add to the potential corral. Two important examples of insertion rules

are, first, the minnorm rule which dictates that one chooses, out of the improving points for the
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potential corral, to add the point pj of minimum norm. Second, the linopt rule dictates that

one chooses, out of the improving points for the potential corral, to add the point pj minimizing

xTpj . Notice that insertion rules are to Wolfe’s method what pivot rules are to the Simplex Method

(see [TZ93] for a summary).

As with pivot rules, there are advantages and disadvantages of insertion rules. For example, the

minnorm rule has the advantage that its implementation only requires an initial ordering of the

points, then in each iteration it need only search for an improving point in order of increasing

norm and add the first found. However, the linopt insertion rule has the advantage that, if the

polytope is given in H-representation (intersection of halfspaces) rather than V-representation

(convex hull of points), one may still perform Wolfe’s method by using linear programming to find

pj minimizing xTpj over the polytope. In other words, Wolfe’s method does not need to have

the list of vertices explicitly given, but suffices to have a linear programming oracle that provides

the new vertex to be inserted. This feature of Wolfe’s method means that each iteration can be

implemented efficiently even for certain polyhedra having too many vertices and facets: specifically,

over zonotopes (presented as a Minkowski sum of segments) [FHI06] and over the base polyhedron

of a submodular function [Fuj80].

As we mentioned previously, the choice of deletion rule has far less impact on the behavior of Wolfe’s

algorithm. If there are multiple choices for points to remove from the potential corral, the deletion

rule determines the order they leave, but they will all leave during the course of the same major

cycle. Thus, deletion rules do not have an impact on the computational complexity of Wolfe’s

algorithm.

3.2.1. Examples. We begin by illustrating the behavior of Wolfe’s method with a simple

example. This example with the linopt insertion rule also appears in Wolfe’s original paper [Wol76].

The example is the triangle formed by the three points in R2, p1 = (0, 2), p2 = (3, 0), and

p3 = (−2, 1). The table of major and minor cycles, the list of sets C, and points x and y are listed

in Table 3.1 and visualizations of the steps are in Figures 3.4 and 3.5 for the linopt insertion rule.

The table of major and minor cycles, the list of sets C, and points x and y are listed in Table

3.2 and visualizations of the steps are in Figures 3.6 and 3.7 for the minnorm insertion rule. In
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Major Cycle Minor Cycle C x y

0 0 {p1} p1

1 0 {p1,p2} p1 (0.92, 1.38)

2 0 {p1,p2,p3} (0.92, 1.38) 0

2 1 {p2,p3} (0.35, 0.53) (0.12, 0.58)

Table 3.1. iterations for linopt insertion rule on a triangle in R2

x = p1

p2

p3

0

x = p1

p2

p3

0

y

p1

p2

p3

0

x = y

p1

p2

p3

y = 0

x

p1

p2

p3

y = 0

x

z

p1

p2

p3

0
x = zy

Figure 3.4. The first major and minor cycles of Wolfe’s algorithm with the linopt
insertion rule on Wolfe’s example, a triangle in R2.

Major Cycle Minor Cycle C x y

0 0 {p1} p1

1 0 {p1,p3} p1 (−0.8, 1.6)

2 0 {p1,p3,p2} (−0.8, 1.6) 0

2 1 {p3,p2} (−0.33, 0.67) (0.12, 0.58)

Table 3.2. iterations for minnorm insertion rule on a triangle in R2

Figures 3.4, 3.5, 3.6, and 3.7, the potential corrals of the iterations are represented by the bold,

black vertices of the triangle.
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p1

p2

p3

0

x = y

Figure 3.5. The last major cycle of Wolfe’s algorithm with the linopt insertion
rule on Wolfe’s example, a triangle in R2. The point x is the minimum norm point
and all points satisfy Wolfe’s criterion.
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x = z y

p1

p2

p3

Figure 3.6. The first major and minor cycles of Wolfe’s algorithm with the minnorm
insertion rule on Wolfe’s example, a triangle in R2.

We note additionally that there are examples on which Wolfe’s algorithm with the minnorm insertion

rule and the linopt insertion rule have the same behavior. In particular, the sequence of sets C, and

points x, and y are the same for these algorithms on the example in Figure 3.3.
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p1

p2

p3

0

x = y

Figure 3.7. The last major cycle of Wolfe’s algorithm with the minnorm insertion
rule on Wolfe’s example, a triangle in R2. The point x is the minimum norm point
and all points satisfy Wolfe’s criterion.

Figure 3.8. The simplex P = conv(p1,p2,p3,p4) ⊂ R3 where p1 =
(0.8, 0.9, 0),p2 = (1.5,−0.5, 0),p3 = (−1,−1, 2) and p4 = (−4, 1.5, 2).

We now present a simple example where the minnorm rule outperforms the linopt rule. That is, the

minnorm insertion rule is not in obvious disadvantage to the linopt rule. This is in contrast to the

family of examples we present in Section 3.4 where the minnorm rule takes exponential time, while

we expect the linopt rule to take polynomial time.
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Consider the simplex P shown in Figure 3.8 (we present the coordinates of vertices in the figure’s

caption). We list the steps of Wolfe’s method on P for the minnorm and linopt insertion rules in

Tables 3.3 and 3.4 and demonstrate a single step from each set of iterations in Figure 3.9. Each

row lists major cycle and minor cycle iteration number, the vertices in the potential corral, and the

value of x and y at the end of the iteration (before x = y for major cycles). Note that the vertex p4

is added to the potential corral twice with the linopt insertion rule, as evidenced in Table 3.4.

Major Cycle Minor Cycle C x y

0 0 {p1} p1

1 0 {p1,p2} p1 (1, 0.5, 0)

2 0 {p1,p2,p3} (1, 0.5, 0) (0.3980, 0.199, 0.5473)

3 0 {p1,p2,p3,p4} (0.3980, 0.199, 0.5473) (0, 0, 0)

3 1 {p1,p2,p4} (0.2878, 0.1439, 0.3957) (0.1980, 0.0990, 0.4455)

Table 3.3. iterations for minnorm insertion rule on simplex P

Major Cycle Minor Cycle C x y

0 0 {p1} p1

1 0 {p1,p4} p1 (0.2219, 0.9723, 0.2409)

2 0 {p1,p4,p3} (0.2219, 0.9723, 0.2409) (0.2848, 0.3417, 0.5810)

2 1 {p1,p3} (0.2835, 0.3548, 0.5739) (0.2774, 0.3484, 0.5807)

3 0 {p1,p3,p2} (0.2774, 0.3484, 0.5807) (0.3980, 0.199, 0.5473)

4 0 {p1,p2,p3,p4} (0.3980, 0.199, 0.5473) (0, 0, 0)

4 1 {p1,p2,p4} (0.2878, 0.1439, 0.3957) (0.1980, 0.0990, 0.4455)

Table 3.4. iterations for linopt insertion rule on simplex P
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Figure 3.9. Left: Major cycle 1, minor cycle 0 for the linopt rule on P illustrates the
end of a major cycle; the affine minimizer y1 ∈ relint(conv(C)) = relint(conv(p1,p4)).
Right: Major cycle 2, minor cycle 0 for the linopt rule on P illustrates the beginning
of a minor cycle; the affine minimizer y2 6∈ relint(conv(C)) = relint(conv(p1,p4,p3))
and the vertex p4 will be removed in the next minor cycle.

3.3. Discussion of Related Results

Before presenting our example of Wolfe’s exponential behavior, we discuss several previously

known results and related methods. Wolfe proved that his method terminates in a finite number

of steps [Wol76], giving an upper bound on the number of major cycles of
∑n+1

i=1

(
m
i

)
for P =

conv(p1,p2, ...,pm) ⊂ Rn. Since then, several results have shown that Wolfe’s method has pseudo-

polynomial complexity. Before discussing these results, we describe several methods which are

highly related to Wolfe’s method.

First, we discuss von Neumann’s algorithm [Dan92], which solves the feasibility problem: is

0 ∈ conv(p1,p2, ...,pm)? This is the problem ZVPMD defined in Chapter 4. The first steps of the

method are very similar to Wolfe’s method; it requires an initial point, x0, described as a convex

combination of vertices of the polytope. It checks to see if the current point, xk, defines a separating

hyperplane between the origin and the vertices of the polytope via Wolfe’s criterion (Lemma 3.1.1).

If not, it uses the linopt insertion rule to select a new vertex, pik . However, at this point in the

algorithm, it parts from Wolfe’s method. Using the newly selected vertex pik , von Neumann’s

algorithm computes the point of minimum norm along the line segment between xk and pik , which

is an easy one-dimensional problem. This convex minimizer (of xkpik) becomes the new point
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Figure 3.10. An illustration of the non-terminating behavior of von Neumann’s
algorithm for solving ZVPMD.

xk+1 and the algorithm repeats, checking to see if the current point forms a separating hyperplane,

selecting a new vertex, and computing the convex minimizer.

One weakness of von Neumann’s algorithm and a difference from Wolfe’s method is that it is not a ter-

minating algorithm. We illustrate the method and its non-terminating behavior in Figure 3.10. This

behavior is known as zig-zagging. In [EF00], it was shown that if 0 ∈ relint(conv(p1,p2, ...,pm)),

then von Neumann’s algorithm converges linearly. In [PnRS16], the authors analyzed an extension of

von Neumann’s algorithm which allows for away steps when the progress of von Neumann’s algorithm

slows. They showed that this extension converges linearly when 0 ∈ conv(p1,p2, ...,pm) and provides

a certificate of infeasibility otherwise. They extended this line of thinking to demonstrate that the

Frank-Wolfe method, similarly extended to allow for away steps, converges linearly [PnRS16].

We next discuss the Frank-Wolfe method for minimizing a convex function over a convex region

(often a polytope). The classical Frank-Wolfe algorithm [FW56], solves a quadratic program over a

polytope. The algorithm operates nearly identically to von Neumann’s algorithm. It was quickly

generalized to convex programs where linearization of the problem is easily computed, such as when

the objective function, f is differentiable. At each iteration, the current iterate, xk, is the best

seen (minimal objective value) point of the feasible polytope. The method proceeds by computing

the vertex of the feasible polytope which minimizes the inner product with the gradient of the

function, ∇f(xk)
Tpik . It then computes the convex minimizer of the objective function along the
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line segment between xk and pik , which is an easy one-dimensional problem. This convex minimizer

becomes xk+1 and the algorithm proceeds.

Note that when the objective function is ‖·‖2, this method specializes to the von Neumann algorithm.

For this reason, it is known to be non-terminating and to converge with objective function decreasing

at a rate of O(1/t). It was previously shown that when the minimizer lies in the relative interior

of the feasible polytope, then the algorithm converges linearly [BT04] and an affine invariant

convergence analysis was provided in [LJJ13]. Meanwhile, [PnRS16] showed that the Frank-Wolfe

method with away steps converges with objective function decreasing linearly if the minimizer lies

in the feasible polytope (even on the boundary), while [LJJ13] showed that this variant converges

linearly without any dependency upon the location of the minimizer. In [LJJ15], the authors

showed the linear convergence of several generalizations of the Frank-Wolfe method, including

Wolfe’s algorithm with the linopt insertion rule. They showed linear convergence of the objective

function value for fully-corrective Frank-Wolfe, Frank-Wolfe with away steps, pairwise Frank-Wolfe,

and Wolfe’s algorithm for the minimum norm point problem with the linopt insertion rule.

Wolfe’s method is additionally highly similar to Gilbert’s procedure for computing the minimum

of a quadratic form on a convex set [Gil66]. Gilbert’s method iterates highly-similarly to the

Frank-Wolfe method; however, the iterate xk+1, while guaranteed to lie along the line segment

between xk and the point selected via the linopt selection rule for xk, is not necessarily the convex

minimizer of the quadratic form along this line segment. Wolfe’s algorithm with the linopt selection

rule has additionally been studied as the non-negative least-squares procedure of Hanson and

Lawson [LH95, Section 23.3]. The difference between Wolfe’s method (or the non-negative least-

squares procedure) and the other methods discussed in this section is in the use of the vertex selected

via the linopt selection rule. The algorithms of von Neumann, Gilbert, and classical Frank-Wolfe

produce iterates which lie along the line segment between the previous iterate and the selected

vertex. There are variants of the Frank-Wolfe method which produce iterates which are the convex

minimizer of the current active-set (larger than the line segment). In comparison, Wolfe’s method

(or the non-negative least-squares procedure) computes the affine minimizer of the current active set
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and uses a line search to return the iterate to the convex hull of the active set. In particular, this

ensures that the active set is no larger than n+ 1 where n is the dimension of the input points.

In [CJK14], the authors analyzed Wolfe’s method in order to give a complexity analysis of

the Fujishige-Wolfe algorithm for submodular function minimization. They showed that for any

polytope, P , if M = maxp∈P ‖p‖, then in O(nM2/ε) iterations Wolfe’s method returns a point

x with ‖x‖2 ≤ ‖x∗‖2 + ε where x∗ is the point of minimum norm in P . For problems given by

rational data, this is a pseudo-polynomial bound for Wolfe’s method, since the required number of

iterations depends upon the magnitude of the largest integer in the input. A polynomial bound

may only depend upon the encoding length of the integers in the input data, not the magnitude

of these numbers. Note that M is at least as large as the largest integer appearing in any input

point pi. Furthermore, the presence of 1/ε additionally gives a dependence upon the magnitude

of the integers in the input. Concretely, in order to leverage rationality of the solution (Chapter

4, Lemma 4.1.1) and round an approximation to the exact rational solution, one would need a

2−σP -approximate solution. Using the previous bound, this would require O(nM22σP ) iterations,

which is a polynomial in the magnitude of the largest integers in any pi, not their binary size.

In [LJJ15], the authors proved that Wolfe’s algorithm with the linopt insertion rule converges

with objective function decreasing linearly. Specifically, they define 0 < ρ < 1 to be an eccentricity

parameter of P and show that ‖xk‖2−‖x∗‖2 ≤ (1−ρ)k/2(‖x0‖2−‖x∗‖2). First, note that if we have

knowledge of ρ, this gives us a good stopping criterion for using Wolfe’s method to approximate the

minimum norm point solution. For xk ∈ P we have xTx∗ ≥ ‖x∗‖2 by Wolfe’s criterion (Lemma 3.1.1),

so ‖xk−x∗‖2 = ‖xk‖2−2xTk x∗+‖x∗‖2 ≤ ‖xk‖2−‖x∗‖2 ≤ (1−ρ)k/2(‖x0‖2−‖x∗‖2) ≤ (1−ρ)k/2‖x0‖2.

Thus, for an ε-approximate solution, one need only run k ≥ 2− log(1/ε)−log(‖x0‖2)
log(1−ρ) iterations of Wolfe’s

method (possibly stopping before the natural termination of the algorithm). However, we point

out that this does not give a polynomial bound on Wolfe’s method. While this dependence upon

ε, log(1/ε), contributes to the lower bound polynomially in the encoding length of the problem,

the dependence upon ρ does not. Note that −1/ log(1 − ρ) > 1/2ρ for 0 < ρ < 1
2 , and ρ

may be exponentially small in the encoding length of the problem. In fact, for Wolfe’s method,

ρ = c(δ/M)2 where δ is the pyramidal width of P and M is the diameter of P . We point out
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that the simplex S formed as the convex combination of (0, 0, 0), (0, 0, 1), (1/2k, 0, 1), (0, 1/2k, 1)

has diameter 1 < M < 2, while the pyramidal width is bounded above by the width of the face

formed by (0, 0, 1), (1/2k, 0, 1), (0, 1/2k, 1); thus, δ ≤ 1/2k. As the encoding length of this polytope

is polynomial in k, we have that δ/M is not polynomial in the encoding length.

3.4. Example of Exponential Behavior

To understand our hard instance, it is helpful to consider first a simple instance that shows an

inefficiency of Wolfe’s method. The example is a set of points where a point leaves and reenters

the current corral: four points in R3, (1, 0, 0), (1/2, 1/4, 1), (1/2, 1/4,−1), (−2, 1/4, 0). If one labels

the points 1, 2, 3, 4, the sequence of corrals with the minnorm rule is 1, 12, 23, 234, 14, where point

1 enters, leaves and reenters (For succintness, sets of points like {a, b, c} may be denoted abc.).

The idea now is to recursively replace point 1 (that reenters) in this construction by a recursively

constructed set of points whose corrals are then considered twice by Wolfe’s method. To simplify

the proof, our construction uses a variation of this set of 4 points with an additional point and

modified coordinates. This modified construction is depicted in Fig. 3.11, where point 1 corresponds

to a set of points P (d− 2), points 2,3 correspond to points pd,qd and point 4 corresponds to points

rd, sd.

Figure 3.11. Left: In this view of P (d), the point labeled P (d − 2) represents
all points from P (d− 2) embedded into Rd. The axis labeled Rd−2 represents the
(d− 2)-dimensional subspace, span (P (d− 2)) projected into span

(
o∗d−2

)
. Right: A

two-dimensional view of P (d) projected along the xd coordinate axis.
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The high-level idea of our exponential lower bound example is the following. We will inductively

define a sequence of instances of increasing dimension of the minimum norm point problem. Given

an instance in dimension d − 2, we will add a few dimensions and points so that, when given to

Wolfe’s method, the number of corrals of the new augmented instance in dimension d has about twice

the number of corrals of the input instance in dimension d− 2. More precisely, our augmentation

procedure takes an instance P (d − 2) in Rd−2, adds two new coordinates and adds four points,

pd,qd, rd, sd, to get an instance P (d) in Rd.

Points pd,qd are defined so that the method on instance P (d) goes first through every corral given

by the points in the prior configuration P (d − 2) and then goes to corral pdqd. To achieve this

under the minimum norm rule, the four new points have greater norm than any point in P (d− 2)

and they are in the geometric configuration sketched in Fig. 3.11.

At this time, no point in P (d− 2) is in the current corral or available to add; see the left of Figure

3.12 for a visualization. If a point in P (d− 2) is part of the optimal corral, it will have to reenter,

which is expensive. Points rd, sd are defined so that rdsd is a corral after pdqd, but now every point

in P (d− 2) is improving according to Wolfe’s criterion and may enter again; see the right of Figure

3.12. Specifically, every corral in P (d− 2), with rdsd appended, is visited again.

Before proving this behavior for the example in dimension d, we list the iterations, major and

minor cycle counts, and the points x and y for the example in dimension three. Note that as

P (1) = {1}, we have C(1) = 1. Thus, we expect the sequence of corrals for P (3) with the

minnorm insertion rule to be (1, 0, 0), (1, 0, 0)p3,p3q3,q3r3, r3s3, r3s3(1, 0, 0). Table 3.5 below

demonstrates that this is the case. Note that the corrals correspond to (major cycle, minor cycle):

(0, 0), (1, 0), (2, 1), (3, 1), (4, 1), (5, 0). For comparison, we include the iterations on P (3) with the

linopt insertion rule in Table 3.6.

3.4.1. Preliminary Lemmas. Before we start describing the exponential example in detail,

we wish to review some preliminary lemmas of independent interest which will be used in the

arguments. The first lemma demonstrates that orthogonality between finite point sets allows us to

easily describe the affine minimizer of their union. Figure 3.13 shows two such situations, one in

which the affine hull of the union of the point sets span all of R3 and one in which it does not.
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Figure 3.12. Left: pdqd is a corral and none of P (d− 2) is available to add. Right:
rdsd is a corral and all of P (d − 2) is available to add. The planes represent the
hyperplanes defined by Wolfe’s criterion. The points on the ‘away’ side of the plane
are available to add to the potential corral.

Major Cycle Minor Cycle C x y

0 0 {(1, 0, 0)} (1, 0, 0)

1 0 {(1, 0, 0),p3} (1, 0, 0) (0.810, 0.095, 0.381)

2 0 {(1, 0, 0),p3,q3} (0.810, 0.095, 0.381) (0.2, 0.4, 0)

2 1 {p3,q3} (0.5, 0.25, 0.1875) (0.5, 0.25, 0)

3 0 {p3,q3, r3} (0.5, 0.25, 0) (0, 0.25, 0)

3 1 {q3, r3} (0.3, 0.25, 0) (0.297, 0.25, 0.0297)

4 0 {q3, r3, s3} (0.297, 0.25, 0.0297) (0, 0.25, 0)

4 1 {r3, s3} (0, 0.25, 0) (0, 0.25, 0)

5 0 {r3, s3, (1, 0, 0)} (0, 0.25, 0) (0.059, 0.235, 0)

Table 3.5. iterations for minnorm insertion rule on P (3)

Lemma 3.4.1. Let A ⊆ Rd be a proper linear subspace. Let P ⊆ A be a non-empty finite set. Let

Q ⊆ A⊥ be another non-empty finite set. Let x be the minimum norm point in aff(P ). Let y be the

minimum norm point in aff(Q). Let z be the minimum norm point in aff(P ∪Q). We have:
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Major Cycle Minor Cycle C x y

0 0 {(1, 0, 0)} (1, 0, 0)

1 0 {(1, 0, 0), r3} (1, 0, 0) (0.901, 0.025, 0.298)

2 0 {(1, 0, 0), r3, s3} (0.901, 0.025, 0.298) (0.059, 0.235, 0)

Table 3.6. iterations for linopt insertion rule on P (3)

Figure 3.13. Examples of Lemma 3.4.1. Left: the affine hull of P ∪Q is not full
dimensional, and thus the affine minimizer lies at z along the line segment connecting
x = p and y. Right: the convex hull of P ∪Q is full-dimensional and thus the affine
hull of P ∪Q includes O which is the affine minimizer.

(1) z is the minimum norm point in [x,y] and therefore, if x 6= 0 or y 6= 0, then z =

λx + (1− λ)y with λ =
‖y‖22

‖x‖22+‖y‖22
.

(2) If x 6= 0 and y 6= 0, then z is a strict convex combination of x and y.

(3) If x 6= 0, y 6= 0 and P and Q are corrals, then P ∪Q is also a corral.

Proof. If x = y = 0 then part 1 follows immediately. If at least one of x,y is non-zero, then

they are also distinct by the orthogonality assumption. Given two distinct points a,b, one can show
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that the minimum norm point in the line through them is λa+(1−λ)b where λ = bT (b−a)/‖b−a‖22.

For points x,y as in the statement, the minimum norm point in aff(x ∪ y) is z′ = λx + (1− λ)y

with λ =
‖y‖22

‖x‖22+‖y‖22
∈ [0, 1]. Thus, z′ is also the minimum norm point in [x,y]. We will now use

the optimality condition in Lemma 3.1.2 to conclude that z′ = z. Let p ∈ P . Then pT z′ can

be computed in two steps: First project p onto span (x,y) (a subspace that contains z′). This

projection is x by optimality of x. Then project onto z′. This shows that pT z′ = xT z′ = ‖z′‖22. A

similar calculation shows qT z′ = ‖z′‖22 for any q ∈ Q. We conclude that z′ is the minimum norm

point in aff(P ∪Q). This proves part 1.

Part 2 follows from our expression for λ above, which is in (0, 1) when x 6= 0 and y 6= 0.

Under the assumptions of part 3, we have that x is a strict convex combination of P and y is a

strict convex combination of Q. This combined with the conclusion of part 2 gives that z is a strict

convex combination of P ∪Q. The claim in part 3 follows. �

The following lemma shows conditions under which, if we have a corral and a new point that only

has components along the minimum norm point of the corral and along new coordinates, then the

corral with the new point added is also a corral. Moreover, the new minimum norm point is a

convex combination of the old minimum norm point and the added point. Figure 3.14 gives an

example of such a situation in R3. Denote by span (M) the linear span of the set M .

Lemma 3.4.2. Let P ⊆ Rd be a finite set of points that is a corral. Let x be the minimum norm

point in aff(P ). Let q ∈ span
(
x, span (P )⊥

)
, and assume qTx < min

{
‖q‖22, ‖x‖22

}
. Then P ∪ {q}

is a corral. Moreover, the minimum norm point y in conv(P ∪{q}) is a (strict) convex combination

of q and the minimum norm point of P : y = λx + (1− λ)q with λ = qT (q− x)/‖q− x‖22.

Proof. Let y be the minimum norm point in aff(P ∪ {q}). Intuitively, y should be the

minimum norm point in the line through x and q. We will characterize y and show that it is a

strict convex combination of P ∪ {q} (which implies that it is a corral). Given two points a,b,

one can show that the minimum norm point in the line through them is λa + (1 − λ)b where

λ = bT (b − a)/‖b − a‖22. Thus, we define y = λx + (1 − λ)q with λ = qT (q − x)/‖q − x‖22. By

definition we have y ∈ aff(P ∪ {q}).
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Figure 3.14. An example of Lemma 3.4.2 in which point q satisfies all assumptions
and P ∪ {q} is a corral. The hyperplanes are labeled with their defining properties
and demonstrate that qTx < min{‖x‖2, ‖q‖2}. The minimizer of P ∪ {q} lies at the
intersection of the blue, vertical axis and conv(P ∪ {q}).

The minimality of the norm of y follows from the optimality condition in Lemma 3.1.2. It holds by

construction for q. It also holds for p ∈ P : The projection of p onto y can be computed in two

steps. First, project onto span (x,q) (a subspace that contains y), which is x by optimality of x.

Then project onto y. This shows that pTy = xTy = ‖y‖2 (the second equality by optimality of y).

We conclude that y is of minimum norm in aff(P ∪ {q}).

To conclude that P∪{q} is a corral, we show that y is a strict convex combination of points P∪{q}. It

is enough to show that y is a strict convex combination of x and q. We have λ = qT (q−x)/‖q−x‖22 =

‖q‖22−qTx
‖q−x‖22

> 0 by assumption. We also have 1 − λ = −xT (q − x)/‖q − x‖22 =
‖x‖22−qTx
‖q−x‖22

> 0 by

assumption. �

Our last lemma shows that if we have points in two orthogonal subspaces, A and A⊥, then adding a

point from A⊥ to a set from A does not cause any points from A that previously did not violate

Wolfe’s criterion to violate it. Figure 3.15 demonstrates this situation.
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Figure 3.15. An example of Lemma 3.4.3 in which adding points Q from A⊥ to
points P from A create a new affine minimizer, z, but the points satisfying Wolfe’s
criterion in A remain the same. Note that both hyperplanes intersect at the affine
minimizer of P , so the halfspace intersections with A are the same.

Lemma 3.4.3. For a point z define Hz = {w ∈ Rn : wT z < ‖z‖22}. Suppose that we have an

instance of the minimum norm point problem in Rd as follows: Some points, P , live in a proper

linear subspace A and some, Q, in A⊥. Let x be the minimum norm point in aff(P ) and y be the

minimum norm point in aff(P ∪Q). Then Hy ∩A = Hx ∩A.

Proof. Let B be the span of x and Q. We first show y ∈ B. To see this, suppose not.

Decompose y as y = λv +
∑

q∈Q µqq, where v ∈ aff(P ) and λ +
∑
µq = 1. Decompose v as

v = u + x where u ⊥ x and u ∈ A (this is possible because v − x is orthogonal to x, by optimality

of x, Lemma 3.1.2). Thus, y = λu + λx +
∑

q∈Q µqq with λu orthogonal to λx +
∑

q∈Q µqq. This

implies that y′ = λx +
∑

q∈Q µqq has a smaller norm than y and y′ ∈ aff(P ∪ Q). This is a

contradiction.
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To conclude, we have Hy ∩A is a halfspace in A whose normal is parallel to the projection of y onto

A (It is helpful to understand how to compute the intersection of a hyperplane with a subspace. If

Tg = {w : w · g = 1} and S is a linear subspace, then Tg ∩ S = {w ∈ S : w · projSg = 1}. In other

words, in order to intersect a hyperplane with a subspace we project the normal.). That is, it is

parallel to x. But that halfspace must also contain x on its boundary. Thus, that halfspace is equal

to Hx ∩A. �

3.4.2. Proof of Exponential Behavior. We will now describe our example in detail. The

simplest version of our construction uses square roots and real numbers. We present instead a

version with a few additional tweaks so that it only involves rational numbers.

Let P (1) = {1} ⊆ Q. For odd d > 1, let P (d) be a list of points in Qd defined inductively as follows:

Let o∗d denote the minimum norm point in conv(P (d)). Let Md := maxp∈P (d) ‖p‖1, which is a

rational upper bound to the maximum 2-norm among the points in P (d). (For a first reading one

can let Md be the maximum 2-norm among points in P (d), which leads to an essentially equivalent

instance except that it is not rational.) Similarly, let md = ‖o∗d‖∞, which is a rational lower bound

to the minimum norm among points in conv(P (d)). (Again, for a first reading one can define

md = ‖o∗d‖2 which leads to an essentially equivalent instance, except that it is not rational.)

We finally present the example. If we identify P (d) with a matrix where the points are rows, then

the points in P (d) are given by the following block matrix:

P (d) =



P (d− 2) 0 0

1
2o∗d−2

md−2

4 Md−2

1
2o∗d−2

md−2

4 −(Md−2 + 1)

0
md−2

4 Md−2 + 2

0
md−2

4 −(Md−2 + 3).


.

The last four rows of the matrix P (d) are the points pd,qd, rd, sd of the configuration. For a picture

of the case of P (3) see Figure 3.16.
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Figure 3.16. Left: Three-dimensional view of P (3). Right: A two-dimensional
view of P (3) projected along the x3 coordinate axis.

Remark 3.4.1. First note that strictly speaking P (d − 2) ⊂ Qd−2, and that we are defining an

embedding of it into Qd, for which we have to use a recursive process. To avoid unnecessary notation,

we will abuse the notation. The point vd−2 denotes both a point of P (d− 2) and of the subsequent

P (d), i.e., vd−2 = (v, 0, 0) will be the identical copy of vd−2 within P (d), but we add two extra zero

coordinates. Depending on the context vd−2 will be understood as both a (d− 2)-dimensional vector

or as a d-dimensional vector (e.g., when doing dot products). The points of P (d− 2) become a subset

of the point configuration P (d) by padding extra zeros. See Figures 3.11 and 3.17 which illustrate

this embedding and address our visualizations of these sets in three dimensions.

Theorem 3.4.4. Consider the execution of Wolfe’s algorithm (Method 3.9) with the minnorm point

rule on input P (d) where d = 2k − 1. Then the sequence of corrals has length 5 · 2k−1 − 4.

Proof. Points in P (d) are shown in order of increasing norm. Let pd,qd, rd, sd denote the last

four points of P (d), respectively. Let C(d) denote the ordered sequence of corrals in the execution

of Wolfe’s method on P (d). Let O(d) denote the last (optimal) corral in C(d).
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Figure 3.17. As described in Figure 3.11, the axis labeled Rd−2 represents the
(d − 2)-dimensional subspace span (P (d− 2)) projected onto the one dimensional
subspace span

(
o∗d−2

)
. The projection of the set P (d− 2) forms a ‘cloud’ of points

and the convex hull of this projection has many fewer faces than the unprojected
convex hull. We visualize P (d− 2) and subsets as a single point in span

(
o∗d−2

)
.

The rest of the proof will establish that the sequence of corrals C(d) is

C(d− 2)

O(d− 2)pd

pdqd

qdrd

rdsd

C(d− 2)rdsd

(where a concatenation such as C(d− 2)rdsd denotes every corral in C(d− 2) with rd and sd added).

After this sequence of corrals is established, we solve the resulting recurrence relation: Let T (d)

denote the length of C(d). We have T (1) = 1, T (d) = 2T (d− 2) + 4. This implies T (d) = 5 · 2k−1− 4

(with d = 2k − 1).
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All we must show now to complete the proof of Theorem 3.4.4 is that C(d) has indeed the stated

recursive form. We do this by induction on d. The steps of the proof are written as claims with

individual proofs which are concluded with ♦.

By construction, C(d) starts with C(d− 2). This happens because points in C(d) are ordered

by increasing norm and the proof proceeds inductively as follows: The first corral in C(d) is the

minimum norm point in P (d), which is also the first corral in C(d− 2). Suppose now that the first

t corrals of C(d) coincide with the first t corrals of C(d− 2). We will show that corral t+ 1 in C(d)

is the same as corral t + 1 in C(d− 2). To see this, it is enough to see that the set of points in

P (d) that can enter (improving points) contains the point that enters in C(d− 2) (with two zeros

appended) and contains no point of smaller norm. This two-part claim is true because the two new

zero coordinates play no role in this and all points in P (d) but not in P (d− 2) have a larger norm

than any point in P (d).

OnceO(d− 2) is reached (with minimum norm point o∗d−2), the set of improving points, as established

by Wolfe’s criterion, consist of {pd,qd, rd, sd}. Now, because we are using the minimum-norm

insertion rule, the next point to enter is pd.

Claim 1. O(d− 2)pd is a corral.

Proof of Claim. This is a special case of Lemma 3.4.2. We have pd = (o∗d−2/2,md−2/4,Md−2).

We just need to verify the two inequalities in Lemma 3.4.2:

(o∗d−2)Tpd = ‖o∗d−2‖22/2 < ‖o∗d−2‖22 < ‖pd‖22.

♦

Claim 2. The next improving point to enter is qd.

Proof of Claim. We first check that no point in P (d− 2) can enter. From Lemma 3.4.2 we

know the optimal point y in corral O(d− 2)pd explicitly in terms of the optimal point o∗d−2 of

O(d− 2) and pd, namely y is a convex combination λo∗d−2 + (1 − λ)pd, with λ =
‖pd‖22−pdT o∗d−2

‖pd−o∗d−2‖
2
2

.

Let p ∈ P (d − 2). We check that it cannot enter via Wolfe’s criterion. We compute pTy in two
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steps: First project p onto span
(
o∗d−2,pd

)
(a subspace that contains y). This projection is longer

than o∗d−2 by optimality of o∗d−2. Then project onto y. This shows that pTy ≥ o∗d−2
Ty = ‖y‖22 and

p cannot enter as it is not an improving point according to Wolfe’s criterion.

By construction, qd is closer to the origin than rd, sd, so to conclude it is enough to check that qd is

an improving point per Wolfe’s criterion. Compute

yTqd = λ(o∗d−2)Tqd + (1− λ)pTd qd

≤ λ

2
‖o∗d−2‖22 + (1− λ)

[
1

4
‖o∗d−2‖22 +

1

16
‖o∗d−2‖22 −M2

d−2 −Md−2

]
≤ λ

2
‖o∗d−2‖22

since by construction Md−2 ≥ 1 and
∥∥o∗d−2

∥∥
2
≤ 1. On the other hand,

‖y‖22 = λ2‖o∗d−2‖22 + (1− λ)2‖pd‖22 + 2λ(1− λ)
1

2
‖o∗d−2‖22

= λ‖o∗d−2‖22 + (1− λ)2‖pd‖22

≥ λ‖o∗d−2‖22.

Thus, yTqd < ‖y‖2, that is, qd is an improving point. ♦

Claim 3. The current set of points, O(d− 2) ∪ {pd,qd}, is not a corral. Points in O(d− 2) leave

one by one. The next corral is pdqd.

Proof of Claim. Instead of analyzing the iterations of Wolfe’s inner loop, we use the key

fact, from Section 3.2, that the inner loop must end with a corral whose distance to the origin

is strictly less than the previous corral. We look at the alternatives: This new corral cannot be

O(d− 2) ∪ {pd} (the previous corral) or any subset of it because it would not decrease the distance.

An analysis similar to that of Claim 1 or basic trigonometry (in three-dimensions) shows that

O(d− 2)∪{qd} is a corral whose distance to the origin is larger than the distance for O(d− 2)∪{pd}.

See Fig. 3.18, where we show a projection, the perpendicular line segments to conv(O(d− 2),pd)
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Figure 3.18. A projection of the point set in the direction of xd−1. Any corral
of the form Sqd where S ⊂ O(d− 2) would have distance larger than the previous
corral, O(d− 2)pd.

and conv(O(d− 2),qd) are shown in dotted line after projection. Thus, the new corral cannot be

O(d− 2) ∪ {qd} or any subset of it.

No set of the form S∪{pd,qd} with S ⊆ O(d− 2) and S non-empty can be a corral: To see this, first

note that the minimum norm point in conv(S∪{pd,qd}) is in the segment [pd,qd], specifically, point

(o∗d−2/2,md−2/4, 0) (minimality follows from Wolfe’s criterion, Lemma 3.1.1). This implies that the

minimum norm point in aff(S ∪ {pd,qd}) cannot be in the relative interior of conv(S ∪ {pd,qd})

when S is non-empty (see Figure 3.19).

The only remaining non-empty subset is {pd,qd}, which is the new corral. ♦

Claim 4. The set of improving points is now {rd, sd}.

Proof of Claim. Recall that the optimal point in corral {pd,qd} has coordinates (o∗d−2/2,md−2/4, 0).

Thus, when computing distances and checking Wolfe’s criterion it is enough to do so in the two-

dimensional situation depicted in Figure 3.20. A hyperplane orthogonal to the segment from the

origin to (o∗d−2/2,md−2/4, 0) is shown in Figure 3.20. It leaves the points in P (d− 2) above and

both rd and sd below making them the only improving points. ♦
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Figure 3.19. The minimum norm point in conv(S ∪{pd,qd}) is in the line segment
between pd and qd.

Figure 3.20. The set of improving points is now {rd, sd}.

Point rd enters since it has smallest norm.

Claim 5. Point pd leaves and the next corral is qdrd.
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Figure 3.21. The set
{pd,qd, rd} is not a corral.

Figure 3.22. The only improv-
ing point is sd.

Proof of Claim. To start, notice that by construction the four points pd,qd, rd, sd lie on a

common hyperplane, L, parallel to the subspace spanned by o∗d−2. Thus, one does not need to do

distance calculations but rather Fig. 3.21 is a faithful representation of the positions of points. The

origin is facing the hyperplane L, parallel to span
(
o∗d−2

)
. The closest point to the origin within L

is in the line segment joining rd, sd thus, as we move vertically, the closest point to the origin in

triangle pd,qd, rd must be in the line segment joining rd and qd. ♦

Claim 6. The only improving point now is sd.

Proof of Claim. Once more we rely in two different orthogonal two-dimensional projections

of P (d) to estimates distances and to check Wolfe’s criterion. The line segment from the origin to

the optimum of the corral qd, rd (we could calculate this exactly, but it is not necessary), and its

orthogonal hyperplane are shown in Figure 3.22. This shows only rd or sd are candidates but rd is

in the current corral, so only sd may be added. ♦

Point sd enters as the closest improving point to the origin.

Claim 7. Point qd leaves. The next corral is rdsd.
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Figure 3.23. The point qd leaves. Figure 3.24. The improving
points are P (d− 2).

Proof of Claim. We wish to find the closest point to the origin in triangle qd, rd, sd. From

Figure 3.23 the optimum is between rd, sd; this point is (md−2/4)ed−1. Clearly this point is below

qd, so it must leave the corral. ♦

Claim 8. The set of improving points is now P (d− 2) (with two zero coordinates appended).

Proof of Claim. Now Wolfe’s criterion hyperplane contains the four points pd,qd, rd, sd by

construction leaving P (d− 2) on the same side as the origin (see Figure 3.24). ♦

The first (and minimum norm) point in P (d) enters and the next corral is this point together with

rd and sd. That is, the next corral is precisely the first corral in C(d− 2)rdsd. We will prove

inductively that the sequence of corrals from now on is exactly all of C(d− 2)rdsd. To see this, we

repeatedly invoke Lemma 3.4.3 after every corral with A equal to the subspace spanned by the first

d − 2 coordinate vectors of Rd. Suppose that the current corral is Crdsd, where C is one of the

corrals in C(d− 2) and denote the next corral in C(d− 2) by C ′. From Lemma 3.4.3, we get that

the set of improving points for corral Crdsd is obtained by taking the set of improving points for

corral C and removing {pd,qd, rd, sd}. Thus, the point that enters is the same that would enter

after corral C. Let a denote that point.

Claim 9. The next corral is C ′rdsd.
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Proof of Claim. The current set of points is Crdsda. If Ca is a corral then so is Crdsda =

C ′rdsd (by Lemma 3.4.1, part 3) and the claim holds. If Ca is not a corral, it is enough to prove

that the sequence of points removed by the inner loop of Wolfe’s method on this set is the same

as the sequence on set Crdsda. We will show this now by simultaneously analyzing the execution

of the inner loop on Ca and Crdsda. We distinguish the two cases with the following notation:

variables are written without a bar (¯) and with a bar, respectively.

Let x1, . . . ,xk be the sequence of current points constructed by the inner loop on Ca. Let p1, . . . ,pk

be the sequence of removed points. Let C1, . . . , Ck be the sequence of current sets of points at

every iteration. Let x1, . . . ,xk be the corresponding sequence on Crdsda. Let p1, . . . ,pk be the

corresponding sequence of removed points. Let C̄1, . . . , C̄k̄ be the corresponding sequence of current

sets of points. We will show inductively: k = k̄, there is a one-to-one correspondence between

sequences (xi) and (xi), and (pi) = (pi). More specifically, the correspondence is realized by

maintaining the following invariant in the inner loop: xi is a strict convex combination of xi and

the minimum norm point in [rd, sd].

For the base case, from Lemma 3.4.1, part 2, we have that x1 is a strict convex combination of x1

(which is the minimum norm point in conv(C)) and the minimum norm point in segment [rd, sd],

specifically w :=
md−2

4 ed−1.

For the inductive step, if xi is a strict convex combination of the current set of points Ci, then so is

xi of C̄i and the inner loop ends in both cases with corrals Ci = C ′ and C̄i = C ′rdsd, respectively.

The claim holds. If xi is not a strict convex combination of the current set of points Ci, then neither

is xi of C̄i. The inner loop then continues by computing the minimum norm point y in aff(Ci) and

y in aff(C̄i), respectively. It then finds point z in conv(Ci) that is closest to y in segment [xi,y]. It

finds z, respectively. It then selects a point pi to be removed, and a point pi, respectively. From

Lemma 3.4.1, part 2, we have that y is a strict convex combination of y and w.

We will argue that z is a strict convex combination of z and w. To see this, we note that segment

[xi,y] lies in the hyperplane where the last coordinate is 0. Therefore we only need to intersect

it with the part of conv(C̄i) that lies in that hyperplane. This part is exactly conv(Ci ∪ {w}),

which can be written in a more explicit way as the union of all segments of the form [b,w] with
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b ∈ Ci. Even more, we only need to look at triangle w,xi,y, as all relevant segments lie on it.

The intersection of this triangle with conv(Ci) is segment [xi, z] and therefore the intersection of

the triangle with conv(C̄i) is simply triangle xi, z,w. This implies that the intersection between

segment [xi,y] and conv(C̄i) is the same as the intersection between segment [xi,y] and triangle

xi, z,w. This intersection is an interval [xi, z] where z is a strict convex combination of w and z

and z is the closest point to y in that intersection.

It follows that the set of potential points to be removed is the same for the two executions.

Specifically, if z is a strict convex combination of a certain subset C∗ of Ci, then z is a strict convex

combination of C∗ ∪ {rd, sd}. The sets of points that can potentially be removed are Ci \ C∗ and

C̄i \ (C∗ ∪ {rd, sd}) = Ci \ C∗ (the same), respectively. In particular (under a mild consistency

assumption on the way a point is chosen when there is more than one choice; for example, “choose

the point with smallest index among potential points”), pi = pi. This implies Ci+1 = C̄i+1. Also,

xi+1 = z and xi+1 = z is in [xi+1,w]. This completes the inductive argument about the inner loop

and proves the claim. ♦

This completes the proof of Theorem 3.4.4. �

Remark 3.4.2. Lastly, we wish to comment that, while we do not expect that the example P (d)

provides an exponential lower bound for the behavior of Wolfe’s method with the linopt insertion rule,

the pseudo-polynomial complexity bound in [LJJ15] does not give a polynomial bound for Wolfe’s

method with the linopt insertion rule on our example. The eccentricity parameter ρ = O(δ2/M2) is

exponentially small given that M ≥ 1 and δ ≤ 1
4md−2 ≤ 2−d+2 for P (d).

135



CHAPTER 4

Connections and Conclusions

In this chapter, we present results connecting LF and MNP, discuss the computational complexity of

these problems, and present some concluding ideas and future directions. Recall that we stated

that LF and LP are strongly-polynomial time equivalent in Section 1.2.1. Here we reduce linear

programming to the minimum norm point problem over a simplex via a series of strongly-polynomial

time reductions [DLHR18], thus demonstrating the deep connection between the LF and MNP

problems, the two main problems studied in this thesis.

4.1. Issues of Computational Complexity for LP and MNP Problems

In this section, we discuss some preliminary results and problems related to MNP. Before discussing the

complexity of methods for LF, LP and MNP, we must guarantee that solutions to these problems, when

given by rational data, will be rational (otherwise we can only hope to approximate a solution). We

additionally discuss the related problem of computing the vertex of minimum norm in a polyhedron,

which is an NP-hard problem for an H-polyhedron but an easy strongly-polynomial time problem

for a V -polytope.

4.1.1. Rationality of LP and MNP Solutions. First, we prove that computing the minimum

norm point in an affine subspace given by either a system of equations or as the affine hull of

finitely many points requires only solving a system of linear equations. Additionally, this proves

that if the data given is rational then the point of minimum norm will also be rational. Together

these show that computation of the point of minimum norm in an affine subspace may be done

in strongly-polynomial time. This also proves that the vertices of a polyhedron, PA,b, defined

by rational A,b will be rational. Thus, if a rational LP or LF is feasible, a rational solution will

exist.
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Lemma 4.1.1. Computing the point of minimum norm in an affine subspace (given as either P=
A,b

for rational A ∈ Rm×n,b ∈ Rm or as the affine hull of rational p1, ...,pm ∈ Rn) requires only solving

a system of linear equations (and thus the unique solution is rational).

Proof. Proving this claim for either representation is simple after noting that each problem is

a convex program with affine constraints. For each, we need only form the Lagrangian and find a

zero of the gradient of the Lagrangian with respect to the primal variable.

First, consider the problem min 1
2‖x‖

2 subject to Ax = b. The Lagrangian of this problem moves

the constraint into the objective function as L(x, µ) = 1
2‖x‖

2 + yT (Ax − b). Then the gradient

is ∇xL(x,y) = x + ATy. Thus, we have that at the optimum, x = −ATy. Substituting this

into the constraint Ax = b yields −AATy = b. Assuming that A has linearly independent rows

(meaning that the normals of the hyperplanes defining the affine subspace are independent), AAT is

invertible, so we have y = −(AAT )−1b (y is the solution to the previous system of linear equations).

Substituting this back into our previous constraint yields x = AT (AAT )−1b.

Next, consider the problem min 1
2‖x‖

2 subject to x ∈ aff(p1, ...,pm). It simplifies the analysis

significantly to consider the problem instead in terms of the affine coefficients of x in terms of the

points pi, y. We will consider P to be the matrix whose columns are the points p1, ...,pm, so P ∈

Rn×m. Then x = Py and the problem becomes min 1
2‖Py‖2 subject to 1

Ty = 1. The Lagrangian

of this problem is L(y, µ) = 1
2yTP TPy + µ(1Ty − 1) and the gradient is ∇yL(y, µ) = P TPy + µ1.

Thus, we have the constraints P TPy + µ1 = 0 and 1
Ty = 1 which we can write as the single linear

system of equations P TP 1

1
T 0


y

µ

 =

0

1

 .
After we solve this system of linear equations, x is given as Py.

Thus, we have that computing the point of minimum norm in an affine subspace requires only

solving a system of linear equations. It also follows that if all of the given input data is rational,

then the minimum norm point is rational. �
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We use this result to prove the following corollary by considering the face of minimum dimension that

contains the point of minimum norm. Computing the point of minimum norm in the polyhedron is

equivalent to computing the point of minimum norm in the affine hull of the minimum dimension

face containing the minimum norm point.

Corollary 4.1.2. The point of minimum norm in a polyhedron given by rational data (given either

as PA,b for rational A ∈ Rm×n,b ∈ Rm or as the convex hull of rational p1, ...,pm ∈ Rn) is rational.

Proof. Let F be the face of the polyhedron of minimum dimension which contains the point

of minimum norm, x; this is equivalent to x ∈ relint(F ). Note that if the point of minimum norm

in F lies in relint(F ) then it is simultaneously the affine minimizer and convex minimizer; x is the

minimum norm point in aff(F ) and conv(F ). Now, by Lemma 4.1.1, we have that x is rational. �

We additionally use Lemma 4.1.1 to prove that the vertices of a polyhedron given by rational data

are rational. This result is obvious if the polyhedron is a polytope given as the convex hull of finitely

many rational points; the vertices are a subset of these points.

Corollary 4.1.3. The vertices of a polyhedron given as PA,b for rational A ∈ Rm×n,b ∈ Rm are

rational.

Proof. Note that the vertices of a polyhedron PA,b are given by a subsystem of equations

indexed by I ⊂ [m] where |I| = n, AIx = bI . The point that solves this system of equations is

the point of minimum norm in the affine subspace given by P=
AI ,bI

(the solution to this system of

equations must be unique). The result follows from Lemma 4.1.1. �

Finally, we mention that the `1-projection of the origin onto a polyhedron in either representation

will additionally be rational. These problems may be reformulated as LPs and rationality of an

optimal point (it may not be unique) is given by the rationality of the vertices of the feasible

polyhedron for this LP reformulation; see [Sch86] and references therein. We further note that the

`p-projection of the origin onto a rational polyhedron for p 6= 1, 2 need not be rational.
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4.1.2. Minimum Norm Vertex of Polyhedron (MIN-NORM VERTEX). Next we wish to men-

tion a related problem. In this thesis, we have considered computing the point of minimum norm

in a polyhedron. This problem may be computed in polynomial time for polyhedra in either

representation via interior point methods or the ellipsoid method. However, one may instead wish

to compute the vertex of minimum norm in a polyhedron. First, note that if the polytope is given

as the convex hull of a finite set of m points, then this problem requires only computing the norm

of each point, as some subset of the points will be the vertices of the polytope. This computation

takes only O(mn) algebraic operations where m is the number of points describing the polytope and

n is the dimension. Meanwhile, if the polyhedron is given as PA,b, this problem is NP-hard.

Lemma 4.1.4. MIN-NORM VERTEX of an H-polytope is NP-hard.

By MIN-NORM VERTEX we mean the problem of determining whether there is a vertex of squared

norm at most a given value K.

Proof. The hardness reduction is from the directed Hamiltonian path problem which is known

to be NP-hard (see [GJ79, p. 199] and references therein). Let P be the directed st-path polytope

of a directed graph G = (V,A) and vertices s, t mentioned in [FLM97]. The polytope is defined by

the equations and inequalities

∑
j|(s,j)∈A

xsj −
∑

j|(j,s)∈A

xjs = 1,

∑
j|(t,j)∈A

xtj −
∑

j|(j,t)∈A

xjt = −1,

∑
j|(i,j)∈A

xij −
∑

j|(j,i)∈A

xji = 0 for all i ∈ V − {s, t},

0 ≤ xij ≤M for all (i, j) ∈ A,

where there is a variable xij for every edge (i, j) in A. For M ≥ |V |, there are two types of vertices

of P . The vertices of P are either characteristic vectors of the directed st-paths in G [FLM97] or

at least one of the entries of the vertex must be xij = M . Meanwhile, the points in the polytope

P correspond to unions of st-paths and cycles. The characteristic vectors of the cycles define the
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directions of the edges that extend from the vertices defining an st-path to the vertices for which

some xij = M . Hamiltonian paths in G correspond to 0-1 vectors in P with exactly |V | − 1 ones

(which would be a vertex).

Now we introduce the reflected st-path polytope, P̄ , by applying the affine transformation yij = 1−xij .

Note that the vertices of this polytope correspond to the vertices of polytope P . The vertices of

P̄ corresponding to directed st-paths are 0-1 vectors with at least |A| − |V | + 1 ones (since by

the absence of cycles in the paths defining the original vertices these vectors have at most |V | − 1

ones). Moreover, they have exactly |A| − |V |+ 1 ones if and only if they correspond to a directed

st-Hamiltonian path in the graph. The vertices of P̄ corresponding to vertices of P with at least

one entry equal to M must have at least one entry equal to −M + 1, so these have squared norm at

least (M − 1)2. We choose M = max{|A|+ 2, |V |} so that (M − 1)2 ≥ (|A|+ 1)2 > |A| − |V |+ 1.

Thus, the minimum norm vertex of P̄ has squared norm less than or equal to |A| − |V |+ 1 iff it

corresponds to a directed st-Hamiltonian path in G. Taking K := |A| − |V | + 1 completes the

correctness of the hardness reduction. �

4.2. Strongly-Polynomial Reduction of LP to MNP

The main result in this chapter reduces linear programming to finding the minimum norm point

in a V-simplex. It was previously known that linear programming reduces to the minimum norm

point problem over a polytope in polynomial-time [FHI06]. This result is stronger than previous

results and connects the MNP problem to the question of the existence of a strongly-polynomial time

algorithm for LP [Sma00].

4.2.1. Problem Definitions. We give definitions for the problems of linear programming

(LP), feasibility (LFE), bounded feasibility (BFP), V -polytope membership (VPM), zero V -polytope

membership (ZVPM), zero V -polytope membership decision (ZVPMD), distance to a V -polytope (DVP),

and distance to a V -simplex (DVS). (Prefix “V -” means that the respective object is specified as the

convex hull of a set of points.) See [Sch86,GLS88,Sch03] for a detailed discussions of strongly

polynomial time algorithms.
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Definition 4.2.1. Consider the following computational problems:

• LP: Given a rational matrix A, a rational column vector b, and a rational row vector cT ,

output rational x ∈ argmax{cTx : Ax ≤ b} if max{cTx : Ax ≤ b} is finite, otherwise

output INFEASIBLE if {x : Ax ≤ b} is empty and else output INFINITE.

• LFE: Given a rational matrix A and a rational vector b, if P := {x : Ax = b,x ≥ 0} is

nonempty, output a rational x ∈ P , otherwise output NO.

• BFP: Given a rational d× n matrix A, a rational vector b and a rational value M > 0, if

P := {x : Ax = b,x ≥ 0,
∑n

i=1 xi ≤M} is nonempty, output a rational x ∈ P , otherwise

output NO.

• VPM: Given a rational d× n matrix A and a rational vector b, if P := {x : Ax = b,x ≥

0,
∑n

i=1 xi = 1} is nonempty, output a rational x ∈ P , otherwise output NO.

• ZVPM: Given a rational d × n matrix A, if P := {x : Ax = 0,x ≥ 0,
∑n

i=1 xi = 1} is

nonempty, output a rational x ∈ P , otherwise output NO.

• ZVPMD: Given rational points p1,p2, . . . ,pn ∈ Rd, output YES if 0 ∈ conv(p1,p2, ...,pn)

and NO otherwise.

• DVP: Given rational points p1,p2, . . . ,pn ∈ Rd defining P = conv(p1,p2, ...,pn), output

d(0, P )2.

• DVS: Given n ≤ d + 1 affinely independent rational points p1,p2, ...,pn ∈ Rd defining

(n− 1)-dimensional simplex P = conv(p1,p2, ...,pn), output d(0, P )2.

4.2.2. Reductions. Fujishige et al. first observed that linear programs may be solved by

computing a minimum norm point problem [FHI06], so this simple geometric problem is also

relevant to the theory of algorithmic complexity of linear optimization. The following result

demonstrates that we may reduce LP to MNP over a simplex in strongly-polynomial time. Note that

MNP solves DVS as we may compute the distance, d(0, P )2, given the point of minimum norm.

Theorem 4.2.2. LP reduces to DVS in strongly-polynomial time.
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To prove each of the lemmas below, we illustrate the problem transformation and its strong

polynomiality. The first two reductions are highly classical, while those following are intuitive, but

we do not believe have been written elsewhere.

Here we prove that LP reduces to LFE in strongly-polynomial time. Note that we include a proof

only for completeness; this result may be found in [Sch86]. In Section 1.2.1.1, we stated that LP

and LF are strongly-polynomial time equivalent. Reducing LFE to LP is trivial as we may simply

add an arbitrary linear objective to the LF defined by the given LFE. Thus, LFE, LF and LP are all

strongly-polynomial time equivalent.

Lemma 4.2.3. LP reduces in strongly-polynomial time to LFE.

Proof. Let O denote the FP oracle.

Require: A ∈ Qd×n,b ∈ Qd, c ∈ Qn.

Invoke O on

(4.1)

[
A −A Id

]


x+

x−

s

 = b,


x+

x−

s

 ≥ 0.

If the output is NO, output INFEASIBLE.

Invoke O on

(4.2)



−cT cT bT

A −A 0 Id+2n+1

0 0 AT

0 0 −AT





x+

x−

y

s


=



0

b

c

−c


,



x+

x−

y

s


≥ 0.

If the output is NO, output INFINITE, else output rational x = x+ − x−.
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Note that a solution

x̃ :=


x+

x−

s


to (4.1) gives a solution to Ax ≤ b and vice versa. Suppose x̃ satisfies (4.1). Then Ax+−Ax−+s = b.

Define x = x+ − x− and note s ≥ 0. Then Ax ≤ b. Now, suppose x satisfies Ax ≤ b. Let x+ be

the positive coordinates of the vector x and x− be the negative components in absolute value, so

x+
i = max(xi, 0) and x−i = max(−xi, 0). Define s = b−Ax. Since Ax ≤ b, we have that s ≥ 0 and

by construction, x+,x− ≥ 0. Note that

[
A −A I

]
x̃ = Ax+−Ax−+s = A(x+−x−)+b−Ax =

Ax + b−Ax = b.

Note that a solution

z̃ :=



x+

x−

y

s


to (4.2) gives a solution to argmax{cTx|Ax ≤ b} and vice versa. Suppose z̃ is a solution to (4.2).

These are the KKT conditions for the LP argmax{cTx|Ax ≤ b}, so x = x+ − x− is the optimum.

Suppose x ∈ argmax{cTx|Ax ≤ b}. By strong duality, there exists y so that bTy ≤ cTx and

ATy = c,y ≥ 0. Thus, letting x+ and x− be as above, we have

−cT (x+ − x−) + bTy ≤ 0, A(x+ − x−) ≤ b, ATy ≤ c, −ATy ≤ −c.

Now choose s ≥ 0 so that

cTx+−cTx−+bTy+s1 = 0, Ax+−Ax−+sm+1
2 = b, ATy+sn+m+1

m+2 = c, −ATy+s2n+m+1
n+m+2 = −c

where sji denotes the subvector of s of coordinates si, si+1, ..., sj−1, sj . Thus, z̃ satisfies (4.2).

Clearly, constructing the required FP problems takes strongly polynomial time and we have only

two calls to O, so the reduction is strongly-polynomial time. �
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Next we prove that LFE reduces to BFP in strongly-polynomial time. We include a proof only for

completeness; results equivalent to this lemma are well-known and may be found in [Sch86,Kha79]

among others.

Lemma 4.2.4. LFE reduces in strongly-polynomial time to BFP.

Proof. Let O denote the oracle for BFP. Suppose A = (aij/αij)
d,n
i,j=1, b = (bj/βj)

d
j=1 and define

D := max(maxi∈[d],j∈[n] |αij |,maxk∈[d] |βk|) and N := max(maxi∈[d],j∈[n] |aij |,maxk∈[d] |bk|) + 1. If

the entry of A, aij/αij = 0 or the entry of b, bj/βj = 0 define aij = 0 and αij = 1 or bj = 0 and

βj = 1.

Require: A ∈ Qd×n,b ∈ Qd.

Invoke O on Ax = b,x ≥ 0,
∑n

i=1 xi ≤ nDd(n+1) min(d3,n3)Nd(n+1). If the output is NO, output

NO, else output rational x.

Note that the FP Ax = b,x ≥ 0 is feasible if and only if the BFP Ax = b,x ≥ 0,
∑n

i=1 xi ≤

nDd(n+1) min(d3,n3)Nd(n+1) is feasible. If the BFP is feasible then clearly the FP is feasible. Suppose

the FP is feasible. By the theory of minimal faces of polyhedra, we can reduce this to a FP defined

by a square matrix, A, in the following way: By [Che65, Theorem 1.1], there is a solution, x,

with no more than min(d, n) positive entries so that Ax = b and the positive entries of x combine

linearly independent columns of A to form b. Let A′ denote the matrix containing only these

linearly independent columns and x′ denote only the positive entries of x. Then A′x′ = b. Now,

note that A′ ∈ Qd×m where m ≤ d. Since the column rank of A′ equals the row rank of A′, we may

remove d−m linearly dependent rows of A′ and the corresponding entries of b, forming A′′ and b′

so that A′′x′ = b′ where A′′ ∈ Qm×m, b′ ∈ Qm and A′′ is a full-rank matrix.

Define M :=
∏m
i,j=1 |α′′i,j |

∏m
k=1 |β′k| and note that M ≤ Dd(n+1). Define L :=

∏m
i,j=1(|a′′i,j | +

1)
∏m
k=1(|b′k|+ 1) and note that L ≤ Nd(n+1). Define Ā = MA′′ and b̄ = Mb′ and note that Ā and b̄

are integral. By Cramer’s rule, we known that x′i = |detĀi|
|detĀ| where Āi denotes Ā with the ith column

replaced by b̄. By integrality, |detĀ| ≥ 1, so x′i ≤ |detĀi| ≤
∏m
i,j=1M(|aij |+ 1)

∏m
k=1M(|bk|+ 1) =

Mm3
L ≤ Dd(n+1) min(d3,n3)Nd(n+1). Now, note that x′ defines a solution, x, to the original system of
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equations. Let xi = x′j if the jth column of A′ was the selected ith column of A and xi = 0 if the ith

column of A was not selected. Note then that Ax = b,x ≥ 0,
∑n

i=1 xi ≤ nDd(n+1) min(d3,n3)Nd(n+1).

Thus, we have that the FP and BFP are equivalent. To see that this is a strongly-polynomial

time reduction, note that adding this additional constraint takes time for constructing the number

nDd(n+1) min(d3,n3)Nd(n+1) plus small constant time. This number takes d(n + 1) comparisons

and d(n+ 1) min(d3, n3) multiplications to form. Additionally, this number takes space which is

polynomial in the size of the input (polynomial in d,n and size of D, N). �

Next we prove that BFP reduces to VPM in strongly-polynomial time. We include a proof for

completeness as we do not know of a reference.

Lemma 4.2.5. BFP reduces in strongly-polynomial time to VPM.

Proof. Let O denote the oracle for VPM.

Require: A ∈ Qd×n, b ∈ Qd, 0 < M ∈ Q.

Invoke O on

(4.3)

[
MA 0

]y

z

 = b,

y

z

 ≥ 0, z +
n∑
i=1

yi = 1.

If the output from O is NO, then output NO, else output rational x = My.

Note that a solution

w̃ :=

y

z


to (4.3) gives a solution the BFP instance, Ax = b,x ≥ 0,

∑n
i=1 xi ≤ M and vice versa. Suppose

w̃ satisfies (4.3). Then x = My is a solution to the BFP instance since Ax = MAy = b and since

y ≥ 0, x = My ≥ 0 and since
∑n

i=1 yi + z = 1, we have
∑n

i=1 yi ≤ 1 so
∑n

i=1 xi = M
∑n

i=1 yi ≤M .

Suppose x is a solution to the BFP instance. Then y = 1
M x and z = 1 −

∑n
i=1 yi satisfies (4.3),

since

[
MA 0

]
w̃ = MAy = Ax = b, y ≥ 0 since x ≥ 0 and since

∑n
i=1 xi ≤ M , we have∑n

i=1 yi = 1
M

∑n
i=1 xi ≤ 1 so z ≥ 0.
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Clearly, this reduction is simply a rewriting, so the reduction is strongly-polynomial time. �

Here we prove that VPM reduces to ZVPM in strongly-polynomial time. We include a proof only

for completeness as we do not know of a reference. Note that this result is obvious due to simple

translation arguments.

Lemma 4.2.6. VPM reduces in strongly-polynomial time to ZVPM.

Proof. Let O be the oracle for ZVPM.

Require: A ∈ Qd×n, b ∈ Qd.

Invoke O on

(4.4)

[
a1 − b a2 − b · · · an − b

]
x = 0,x ≥ 0,

n∑
i=1

xi = 1

where ai ∈ Qm is the ith column of A. If the output is from O is NO, then output NO, else

output rational x.

Note that a solution to (4.4) gives a solution to the VPM instance and vice versa. Note that x satisfies

(4.4) if and only if 0 =
∑n

i=1 xi(ai − b) =
∑n

i=1 xiai − b
∑n

i=1 xi = Ax− b so Ax = b. Thus, x is a

solution to the VPM instance if and only if x is a solution to (4.4).

Clearly, this reduction is simply a rewriting, so the reduction is strongly-polynomial time. �

Here we prove that ZVPM reduces to ZVPMD in strongly-polynomial time. We include a proof for

completeness; this result follows from the strong-polynomiality of solving systems of linear equations

which is a classical result.

Lemma 4.2.7. ZVPM reduces in strongly-polynomial time to ZVPMD.

Proof idea. The reduction sequentially asks for every vertex whether it is redundant and if so, it

removes it and continues. This process ends with at most d+ 1 vertices so that x is a strict convex

combination of them and the coefficients xi can be found in this resulting case by solving a linear

system. �
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Proof. Let O denote the ZVPMD oracle.

Require: P := {A1, . . . ,An} ⊆ Qd where Ai is the ith column of A.

Invoke O on P . If the output is NO, output NO.

for i = 1, . . . , n do

Invoke O on instance P without Ai. If the output from O is YES, remove Ai from P .

end for

Let m be the cardinality of P .

Output the solution x1, . . . , xm to the linear system
∑
xi = 1,

∑
pi∈P xipi = 0

Let P ∗ be the resulting set of points P after the loop in the reduction. Claim: P ∗ contains at

most d + 1 points so that 0 is a strict convex combination of (all of) them. Proof of claim: By

Caratheodory’s theorem there is a subset Q ⊆ P ∗ of at most d + 1 points so that 0 is a strict

convex combination of points in Q. We will see that P ∗ is actually equal to Q. Suppose not, for a

contradiction. Let p ∈ P ∗ \Q. At the time the loop in the reduction examines p, no point in Q has

been removed and therefore p is redundant and is removed. This is a contradiction. �

Here we prove that ZVPMD reduces to DVS in strongly-polynomial time. This reduction, as far as we

know, is new and the proof of our theorem depends upon it.

In our next lemma, we make use of the following elementary fact.

Claim 10. Given A an m× n matrix let B be A with a row of 1’s appended. The columns of A are

affinely independent if and only if the columns of B are linearly independent. The convex hull of the

columns of A is full dimensional if and only if rank of B is m+ 1.

Lemma 4.2.8. ZVPMD reduces in strongly-polynomial time to DVS.

Proof. Clearly ZVPMD reduces in strongly-polynomial time to DVP: Output YES if the distance

is 0, output NO otherwise.

Given an instance of distance to a V-polytope, p1,p2, . . . ,pn, we reduce it to an instance of

DVS as follows: We lift the points to an affinely independent set in higher dimension, a simplex,
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by adding small-valued new coordinates. Claim 10 allows us to handle affine independence in

matrix form. Let A be the d × n matrix having columns (pi)
n
i=1. Let v1, . . . ,vd be the rows of

A. Let v0 ∈ Rn be the all-ones vector. We want to add vectors vd+1, . . . ,vd+t, for some t, so

that v0, . . . ,vd+t is of rank n. To this end, we construct an orthogonal basis (but not normalized,

to preserve rationality) of the orthogonal complement of span (v0, . . . ,vd). The basis is obtained

by applying the Gram-Schmidt orthogonalization procedure (without the normalization step) to

the sequence v0, . . . ,vd, e1, . . . , en. Denote vd+1, . . . ,vd+t the resulting orthogonal basis of the

orthogonal complement of span (v0, . . . ,vd). The matrix with rows v0, . . . ,vd,vd+1, . . . ,vd+t is of

rank n and so is the matrix with rows

v0, . . . ,vd, εvd+1, . . . , εvd+t

for any ε > 0 (to be fixed later). Therefore, the n columns of this matrix are linearly independent.

Let B be the matrix with rows

v1, . . . ,vd, εvd+1, . . . , εvd+t.

Let w1, . . . ,wn be the columns of B. By construction and Claim 10 they are affinely independent.

Let S denote the convex hull of these (n− 1)-dimensional rational points. Polytope S is a simplex.

Moreover, if Q := conv(p1, . . . ,pn), then

d(0, S)2 ≤ d(0, Q)2 + ε2
d+t∑
i=d+1

‖vi‖22 ≤ d(0, Q)2 + ε2n

(where we use that ‖vi‖2 ≤ 1, from the Gram-Schmidt construction). Note that the application of

Gram-Schmidt without normalization causes the bit-size of the numbers involved in the problem to

grow, but only polynomially, thus preserving the strong-polynomiality of the reduction; see [Sch86,

Section 3.3].

The reduction proceeds as follows: Let T be the maximum of the absolute values of all numerators

and denominators of entries in (pi)
n
i=1. This can be computed in strongly polynomial time; without

loss of generality we can assume that the input is integral, and then take T to be the maximum

of the absolute values of all entries in (pi)
n
i=1, as done in Schrijver’s [Sch86, Section 15.2]. From
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Lemma 4.2.9, we have d(0, Q)2 ≥ 1
d(dT )2d

if 0 /∈ Q. Compute rational ε > 0 so that ε2n < 1
d(dT )2d

.

For example, let ε := 1
nd(dT )d

. The reduction queries d(0, S)2 for S constructed as above and given

by the choice of ε we just made. It then outputs YES if d(0, S)2 < 1
d(dT )2d

and NO otherwise. �

Lemma 4.2.9. Let P = conv(p1, . . . ,pn) be a V-polytope with pi ∈ Qd. Let T be the maximum

of the absolute values of all numerators and denominators of entries in (pi)
n
i=1. If 0 /∈ P then

d(0, P ) ≥ 1
(dT )d

√
d
.

Proof. The claim is clearly true if P is empty. If P is non-empty, let y = projP (x). We

have that every facet of P can be written as aTx ≤ k, where a(6= 0) is an integral vector, k is

an integer and the absolute values of the entries of a as well as k are less than (dT )d ( [GLS81,

Theorem 3.6]). By assumption at least one these facet inequalities is violated by 0. Denote by

aTx ≤ k one such inequality. Let H = {x : aTx = k}. We have ‖y‖2 = d(0, P ) ≥ d(0, H), and

d(0, H)2 = k2/ ‖a‖22 ≥
1

d(dT )2d
. The claim follows. �

Note that we have that LP reduces to ZVPMD in strongly polynomial time. Thus, to solve LP, we

need only be able to decide if 0 is a member of a given polytope. By positive-definiteness of norms

(‖x‖ = 0 if and only if x = 0), we have that if projection of 0 in any norm onto a V -polytope may

be computed in strongly-polynomial time (computing this projection computes distance, which

computes membership), then this provides a strongly-polynomial time algorithm for LP.

4.3. Conclusions and Future Work

In this thesis, we have considered several projection methods used in optimization and data

science. We presented analyses of Motzkin’s methods, the randomized Kaczmarz methods, and

their generalization, the Sampling Kaczmarz-Motzkin (SKM) methods, which are all members of

the family of iterative projection methods for LF. We also considered Wolfe’s methods for MNP,

which compute projections onto a convex polytope. We additionally demonstrated the strong

connection between LF and MNP. Below we outline the main contributions of this thesis and some

future directions in more detail.
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We provided a theoretical analysis for Motzkin’s method for inconsistent systems of linear equations

[HN18a]. We showed that by using this greedy selection strategy, Motzkin’s method exhibits

an accelerated convergence rate until a particular threshold is reached. This threshold depends

on the dynamic range of the residual, and could be estimated to employ a strategy that yields

acceleration without sacrificing convergence accuracy. We provided experiments and concrete

analysis for Gaussian systems that support our claims. This work has raised some intuitive questions

concerning this method.

Future directions regarding Motzkin’s method:

• Provide an analysis of the expected dynamic range for relevant systems (other than Gaussian

systems).

• Use the analysis of the accelerated convergence rate of Motzkin’s method to provide an

analysis of the acceleration of SKM.

• Explore the advantage of Motzkin’s method in parallel architectures.

• Extend this work beyond systems of linear equations to general LF problems.

We presented a framework of methods for using the randomized Kaczmarz method to detect and

remove corruptions in a system of linear equations [HN17, HN18b]. We provided theoretical

bounds on the probability that the windowed Kaczmarz methods will successfully detect and remove

all corrupted equations. Moreover, we provided ample experimental evidence that these methods

successfully detect corrupted equations and these results far surpass the theoretical guarantees. We

present next some natural future work.

Future directions regarding the randomized Kaczmarz method:

• Provide a tighter convergence rate analysis of the randomized Kaczmarz method for

specific types of systems. This will additionally provide better detection guarantees for the

windowed Kaczmarz methods.

• Analyze how the windowed Kaczmarz methods depend upon the size of the consistent

system in order to apply methods to MAX-FS.
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• Generalize the windowed Kaczmarz methods and guarantees beyond systems of linear

equations to general LF problems.

We naturally generalized the Motzkin’s methods and the randomized Kaczmarz methods to the

class of Sampling Kaczmarz-Motzkin methods [DLHN17]. We provided a theoretical analysis that

generalizes earlier results and presents a potential acceleration of this convergence rate with the

right choices of parameters. We wish to note that, by easy polarization-homogenization of the

information (where the hyperplane normals ai are thought of as points and the solution vector x is

a separating plane), one can reinterpret SKM as a type of stochastic gradient descent (SGD). We

additionally showed that the SKM methods detect and certify feasibility. We gave a lower bound on

the probability that an SKM iterate is not a certificate of feasibility if the LF has a solution. We

additionally showed that the SKM methods on a full-dimensional system terminate with projection

parameter λ = 2. Finally, we showed numerous experimental results comparing the SKM methods

to Motzkin’s method and the randomized Kaczmarz methods. We plan to consider the following

questions next.

Future directions regarding the Sampling Kaczmarz-Motzkin methods:

• Explore the SKM sampling scheme for more general stochastic gradient descent methods.

• Identify the optimal choices for β and λ for specific classes of systems.

• Explore applying Chubanov’s style of generating additional linear inequalities to the SKM

methods.

In the second half of this thesis, we presented a thorough exposition on Wolfe’s method for MNP.

We presented examples that demonstrate that the behavior of the algorithm depends upon the

choice of insertion rule, and demonstrated that the algorithm may have inefficiencies with all

insertion rules. Our main result demonstrated that Wolfe’s method using a natural insertion rule

exhibits exponential behavior [DLHR17,DLHR18]. This analysis has raised the following natural

questions.

Future directions regarding Wolfe’s methods:
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• Present exponential examples for other insertion rules for Wolfe’s method, especially the

linopt rule which is used in submodular function minimization.

• Analyze the expected behavior of Wolfe’s method with a randomized insertion rule.

• Study the behavior of Wolfe’s method on base polytopes, the polytopes involved in

submodular function minimization.

• Perform a smoothed analysis of Wolfe’s method, or at least study the behavior of Wolfe’s

method on data following a prescribed random distribution.

• Present examples of exponential behavior of Wolfe’s method on simplices, which are deeply

connected to the theoretical complexity of linear programming.

• Explore extensions of Wolfe’s method for other convex `p norms for p ≥ 1 and other

projection-like operators. Note that the Frank-Wolfe method (which is similar to Wolfe’s

method) solves general convex programs; however, we intend to extend Wolfe’s method

(which uses affine minimization rather than a line search) to other convex functions. This

has not yet been explored, as far as we are aware.

Finally, we also showed that the minimum norm point problem for simplices is intimately related to

the complexity of linear programming. Our strongly-polynomial reduction of LP to MNP over a simplex

demonstrated that a strongly-polynomial time algorithm for MNP would provide a strongly-polynomial

time algorithm for LP.
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APPENDIX A

MATLAB Code

In this appendix, we provide MATLAB code for all methods discussed in this thesis. This code is

also freely available from https://www.math.ucdavis.edu/~jhaddock. This code has been written

in MATLAB [MAT16].

The following is MATLAB code for Method 2.1, Motzkin’s method (MM) for linear feasibility.

%NAME: Motzkin’s method (MM) for linear feasibility

%TASK: approximately solves feasible Ax <= b

%AUTHOR: Jamie Haddock

%OUTSIDE FUNCTIONS: none

%INPUT: matrix A, vector b, vector x0 (starting point),

% scalar lambda in (0,2] (projection parameter),

% pos. integer k (number of iterations)

%OUTPUT: approximate solution vector, x

function x=Motzkin(A,b,x0,lambda,k)

xj = x0;

for j = 1:k

%compute residual

res = A*xj - b;

%find most violated constraint

[maxres,maxind] = max(res);

% project into corresponding halfspace

if maxres > 0

a = A(maxind,:);

xj = xj - lambda*(maxres/(norm(a)^2)) * a’;

end

end

%return last iterate

x = xj;

end
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The following is MATLAB code for Method 2.2, Motzkin’s method for systems of linear equa-
tions.

%NAME: Motzkin’s method for systems of linear equations

%TASK: approximately solves feasible Ax = b

%AUTHOR: Jamie Haddock

%OUTSIDE FUNCTIONS: none

%INPUT: matrix A, vector b, vector x0 (starting point),

% pos. integer k (number of iterations)

%OUTPUT: approximate solution vector, x

function x=MotzkinLS(A,b,x0,k)

xj = x0;

for j = 1:k

%compute residual

res = A*xj - b;

%find most violated equation

[~,maxind] = max(abs(res));

% project into corresponding hyperplane

a = A(maxind,:);

xj = xj - (res(maxind)/(norm(a)^2)) * a’;

end

%return last iterate

x = xj;

end
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The following is MATLAB code for Method 2.3, the randomized Kaczmarz method (RK) for linear
feasibility.

%NAME: Randomized Kaczmarz (RK) for linear feasibility

%TASK: approximately solves feasible Ax <= b

%AUTHOR: Jamie Haddock

%OUTSIDE FUNCTIONS: none

%INPUT: matrix A, vector b, vector x0 (starting point),

% scalar lambda in (0,2] (projection parameter),

% pos. integer k (number of iterations)

%OUTPUT: approximate solution vector, x

function x=RK(A,b,x0,lambda,k)

xj = x0;

fronorm = norm(A,‘fro’);

for j = 1:k

%generate random index with probability proportional to squared row norm

randval = rand * fronorm^2;

subfronorm = 0;

ind = 1;

a = A(ind,:);

rownorm = norm(a)^2;

while subfronorm + rownorm < randval

subfronorm = subfronorm + rownorm;

ind = ind + 1;

a = A(ind,:);

rownorm = norm(a)^2;

end

% project into corresponding halfspace

resval = a*xj - b(ind);

if resval > 0

xj = xj - lambda*(resval/(norm(a)^2)) * a’;

end

end

%return last iterate

x = xj;

end
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The following is MATLAB code for Method 2.4, the randomized Kaczmarz method for systems of
linear equations.

%NAME: Randomized Kaczmarz for systems of linear equations

%TASK: approximately solves feasible Ax = b

%AUTHOR: Jamie Haddock

%OUTSIDE FUNCTIONS: none

%INPUT: matrix A, vector b, vector x0 (starting point),

% pos. integer k (number of iterations)

%OUTPUT: approximate solution vector, x

function x=RKLS(A,b,x0,k)

xj = x0;

fronorm = norm(A,‘fro’);

for j = 1:k

%generate random index with probability proportional to squared row norm

randval = rand * fronorm^2;

subfronorm = 0;

ind = 1;

a = A(ind,:);

rownorm = norm(a)^2;

while subfronorm + rownorm < randval

subfronorm = subfronorm + rownorm;

ind = ind + 1;

a = A(ind,:);

rownorm = norm(a)^2;

end

% project into corresponding hyperplane

xj = xj - ((a*xj-b(ind))/(norm(a)^2)) * a’;

end

%return last iterate

x = xj;

end
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The following is MATLAB code for Method 2.5, the windowed Kaczmarz method with removal for
corrupted systems of linear equations.

%NAME: Windowed Kaczmarz with Removal for corrupted linear systems

%TASK: removes corrupted equations from Ax = b and solves remaining system

%AUTHOR: Jamie Haddock

%OUTSIDE FUNCTIONS: none

%INPUT: matrix A, vector b, pos. integer k (number of RK iterations),

% pos. integer W (number of windows),

% pos. integer d (number of equations removed each window)

%OUTPUT: solution to remaining system, x

function x = WKwR(A,b,k,W,d)

B = A; c = b;

n = size(B,2);

for i = 1:W

%compute the window iterate by running k iterations of RK on 0

xi = RKLS(B,c,zeros(n,1),k);

%remove the rows corresponding to the d largest entries of the residual

[~,maxind] = sort(abs(B*xi-c),‘descend’);

B(maxind(1:d),:) = [];

c(maxind(1:d)) = [];

end

%return a solution of the remaining equations

x = B\c;

end
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The following is MATLAB code for Method 2.6, the windowed Kaczmarz method without removal
for corrupted systems of linear equations.

%NAME: Windowed Kaczmarz without Removal for corrupted linear systems

%TASK: detects corrupted equations from Ax = b and solves remaining system

%AUTHOR: Jamie Haddock

%OUTSIDE FUNCTIONS: none

%INPUT: matrix A, vector b, pos. integer k (number of RK iterations),

% pos. integer W (number of windows),

% pos. integer d (number of equations removed each window)

%OUTPUT: solution to remaining system, x

function x = WKwoR(A,b,k,W,d)

n = size(A,2);

S = [];

for i = 1:W

%compute the window iterate by running k iterations of RK on 0

xi = RKLS(A,b,zeros(n,1),k);

%record the rows corresponding to the d largest entries of the residual

[~,maxind] = sort(abs(A*xi-b),‘descend’);

D = maxind(1:d);

S = [S; D];

end

%return a solution of the remaining equations

A(S,:) = [];

b(S,:) = [];

x = A\b;

end
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The following is MATLAB code for Method 2.7, the windowed Kaczmarz method without removal
with unique selection for corrupted systems of linear equations.

%NAME: Windowed Kaczmarz without Removal with Unique Selection for corrupted linear

% systems

%TASK: detects corrupted equations from Ax = b and solves remaining system

%AUTHOR: Jamie Haddock

%OUTSIDE FUNCTIONS: none

%INPUT: matrix A, vector b, pos. integer k (number of RK iterations),

% pos. integer W (number of windows),

% pos. integer d (number of equations removed each window)

%OUTPUT: solution to remaining system, x

function x = WKwoRUS(A,b,k,W,d)

n = size(A,2);

S = [];

for i = 1:W

%compute the window iterate by running k iterations of RK on 0

xi = RKLS(A,b,zeros(n,1),k);

%record the rows corresponding to the d largest unrecorded entries of the

%residual

[~,maxind] = sort(abs(A*xi-b),‘descend’);

maxind = setdiff(maxind,S);

D = maxind(1:d);

S = [S; D];

end

%return a solution of the remaining equations

A(S,:) = [];

b(S,:) = [];

x = A\b;

end
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The following is MATLAB code for Method 2.8, the sampling Kaczmarz-Motzkin method (SKM)
for linear feasibility.

%NAME: Sampling Kaczmarz-Motzkin (SKM) for linear feasibility

%TASK: approximately solves feasible Ax <= b

%AUTHOR: Jamie Haddock

%OUTSIDE FUNCTIONS: none

%INPUT: m x n matrix A, vector b, vector x0 (starting point),

% scalar lambda in (0,2] (projection parameter),

% pos. integer beta in [1,m] (sample size),

% pos. integer k (number of iterations)

%OUTPUT: approximate solution vector, x

function x=SKM(A,b,x0,lambda,beta,k)

xj = x0;

m = size(A,1);

for j = 1:k

%generate uniform random sample of size beta

tauj = sort(randsample(m,beta),‘ascend’);

%find most violated constraint of sample

[maxres,sampind] = max(A(tauj,:)*xj-b(tauj));

maxind = tauj(sampind);

a = A(maxind,:);

% project into corresponding halfspace

if maxres > 0

xj = xj - lambda*(maxres/(norm(a)^2)) * a’;

end

end

%return last iterate

x = xj;

end
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The following is MATLAB code for Method 3.9, Wolfe’s method for minimum norm point.

%NAME: Wolfe’s method for minimum norm point

%TASK: computes the point of minimum norm in a convex polytope given as the

% convex hull of finitely many points

%AUTHOR: Jamie Haddock

%OUTSIDE FUNCTIONS: none

%INPUT: m x n matrix P containing points as rows (m points in R^n),

% initrule in (‘minnorm’,‘first’),

% addrule in (‘minnorm’,‘linopt’,‘first’),

% displayOn in (‘on’,‘off’)

%OUTPUT: approximate solution vector, x

function [solution, data] = wolfe(P,initRule,addRule,displayOn)

data = [];

corrals = {};

corralnum = 1;

n = size(P,2);

m = size(P,1);

%implementation of Wolfe’s method on a polytope given as an mxn matrix

%of the vertices (m points in R^n)

%initRule options are ’minnorm’,‘first’: give rule for initial vertex

%selection; if ’minnorm’, adds the vertex of minimum norm; if ‘first’,

%adds the first vertex in the given matrix order

%addRule options are ‘minnorm’, ‘linopt’, ‘first’: give rule for vertex to be

%added selection; if ‘minnorm’, adds the vertex out of the candidates

%that has minimum norm; if ‘linopt’, adds the vertex, p, out of the

%candidates that minimizes p’x; if ‘first’, adds the vertex out of the

%candidates that appears first in the given matrix order

%display options are ‘on’, ‘off’: if ‘on’, we print information in each

%cycle; if ‘off’, we don’t print any cycle information

majorCycle = 0;

minorCycle = 0;

%check displayOn value

if ~strcmp(displayOn,‘on’) && ~strcmp(displayOn,‘off’)

display(‘Check your displayOn value.’);

solution = inf;

return

end

%initial vertex selection according to selected rule
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if strcmp(initRule,‘first’)

x = P(1,:); %define x to be the first listed vertex

C = [x]; %set potential corral to be this vertex

lambda = [1];

Cind = [1]; %keep track of index of this vertex in P

elseif strcmp(initRule,‘minnorm’)

N = sqrt(sum(P.^2,2));

[val, i] = min(N);

x = P(i,:);

C = [x];

lambda = [1];

Cind = [i];

else

display(‘Check your initRule value.’);

solution = inf;

return;

end

%Step 0: initial vertex selection

if strcmp(displayOn,‘on’)

display([‘Step 0: ’,num2str(majorCycle),‘ ’, num2str(minorCycle),

‘ ’, num2str(x)]);

display([Cind’ C]);

end

data = [data; majorCycle + 0.1*minorCycle size(C,1)];

corrals{corralnum} = Cind;

corralnum = corralnum + 1;

while (norm(x,2) >= eps) && (min(P*x’) + eps < x*x’)

%check that x not= 0 and

%that we don’t already have the min. norm point (i.e., no vertex

%has inner product with x less than ||x||^2

Cprevious = C;

majorCycle = majorCycle + 1;

minorCycle = 0;

%added vertex selected according to selected rule

if strcmp(addRule,‘first’)

%find vertices with inner product with x less than ||x||^2

indOptions = find(P*x’ < x*x’);

%select first option, but only if this is not already in C

while (size(indOptions,1)>0) && (ismember(indOptions(1),Cind))

indOptions = indOptions(2:end);

end

if size(indOptions,1) > 0

j = indOptions(1);
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C = [C; P(j,:)]; %add this vertex to potential corral

lambda = [lambda; 0];

Cind = [Cind,j]; %keep track of indices of potential corral

end

elseif strcmp(addRule,‘minnorm’)

%find vertices with inner product with x less than ||x||^2

indOptions = find(P*x’ < x*x’);

%select minimum norm option, if this is not already in C

N = sqrt(sum(P(indOptions,:).^2,2));

[val,i] = min(N);

while (size(indOptions,1)>0) && (ismember(indOptions(i),Cind))

indOptions(i) = [];

if size(indOptions,1) > 0

N = sqrt(sum(P(indOptions,:).^2,2));

[val,i] = min(N);

end

end

if size(indOptions,1) > 0

j = indOptions(i);

C = [C; P(j,:)]; %add this vertex to potential corral

lambda = [lambda; 0];

Cind = [Cind,j]; %keep track of indices of potential corral

end

elseif strcmp(addRule,‘linopt’)

%find vertices with inner product with x less than ||x||^2

indOptions = find(P*x’ < x*x’);

%select minimum p’x option, if this is not already in C

[minproduct,i] = min(P(indOptions,:)*x’);

while (size(indOptions,1)>0) && (ismember(indOptions(i),Cind))

indOptions(i) = [];

if size(indOptions,1) > 0

[minproduct,i] = min(P(indOptions,:)*x’);

end

end

if size(indOptions,1) > 0

j = indOptions(i);

C = [C; P(j,:)]; %add this vertex to potential corral

lambda = [lambda; 0];

Cind = [Cind,j]; %keep track of indices of potential corral

end

else

display(‘Check your addRule value.’);

solution = inf;

return

end

%check to see that a vertex was added, otherwise end
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if size(Cprevious) == size(C)

if Cprevious == C

solution = x;

display(’Repeated a corral.’);

return

end

end

%Step 1: major cycle vertex addition

if strcmp(displayOn,‘on’)

display([‘Step 1: ’,num2str(majorCycle),‘ ’, num2str(minorCycle),

‘ ’, num2str(x)]);

display([Cind’ C]);

end

%find min morm point in aff(C)

k = size(C,1);

alpha = lsqlin([0 ones(1,k); ones(k,1) C*C’],[1; zeros(k,1)],[],[]);

alpha = alpha(2:end,:);

y = (C’*alpha)’;

%Step 2: found MNP(aff(C)) for current potential corral

if strcmp(displayOn,‘on’)

display([‘Step 2: ’,num2str(majorCycle),‘ ’, num2str(minorCycle),

‘ ’, num2str(x), ‘ ’, num2str(y)]);

display([Cind’ C]);

end

data = [data; majorCycle + 0.1*minorCycle size(C,1)];

while min(alpha) < -eps %check if y is in conv(C)

minorCycle = minorCycle + 1;

negind = find(alpha < -eps);

%x is in conv(C)

lambda = lsqlin(C’,x’,[],[]);

%find convex constant that describes point along x-y that is in

%conv(C) and closest to y

theta = min(lambda(negind)./(lambda(negind)-alpha(negind)));

x = (C’*(theta*alpha + (1-theta)*lambda))’;

%this new point is not a convex combination of one of the

%points in C

i = find(theta*alpha + (1-theta)*lambda<=eps);

lambda = theta*alpha + (1-theta)*lambda;

%take this point out of C and Cind
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if size(i,1) > 0

C(i(1),:) = [];

lambda(i(1)) = [];

Cind(i(1)) = [];

else

i = negind(1);

C(i,:) = [];

lambda(i) = [];

Cind(i) = [];

end

%Step 3: minor cycle vertex removal

if strcmp(displayOn,‘on’)

display([‘Step 3: ’,num2str(majorCycle),‘ ’,

num2str(minorCycle), ‘ ’, num2str(x)]);

display([Cind’ C]);

end

%find min morm point in aff(C)

k = size(C,1);

alpha = lsqlin([0 ones(1,k); ones(k,1) C*C’],[1; zeros(k,1)],[],[]);

alpha = alpha(2:end,:);

y = (C’*alpha)’;

%Step 2: found MNP(aff(C)) for current potential corral

if strcmp(displayOn,’on’)

display([‘Step 2: ’,num2str(majorCycle),‘ ’,

num2str(minorCycle), ‘ ’, num2str(x), ‘ ’,

num2str(y)]);

display([Cind’ C]);

end

data = [data; majorCycle + 0.1*minorCycle size(C,1)];

end

x = y;

lambda = alpha;

corrals{corralnum} = Cind;

corralnum = corralnum + 1;

end

solution = x;

if strcmp(displayOn,‘on’)

display([‘Corrals: ’,num2str(size(corrals,2))]);

for i = 1:size(corrals,2)

display(corrals{i});

end

end

end
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Carathéodory’s theorem, 12, 104

certificate of feasibility, 27, 85

Chubanov’s method, 42
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