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Sparse Recovery Problem

Applications:

. image reconstruction

. hyper spectral imaging

. wireless communications

. analog to digital conversion

Sparse Recovery: reconstruct

approximately sparse x ∈ RN from

few nonadaptive, linear, and noisy

measurements, y = Ax + e

A ∈ Rm×N : measurement matrix

e ∈ Rm: noise

Approach:

minx∈RN‖x‖1 s.t. ‖Ax− y‖≤ ε
or

minx∈RN
1
m‖Ax− y‖2 s.t. ‖x‖0≤ s
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Algorithmic Approaches

Convex optimization:

. linear programming

. (proximal) gradient descent

. coordinate descent

. stochastic iterative methods

(SGD)

Greedy pursuits:

. orthogonal matching pursuit

(OMP)

. regularized OMP (ROMP)

. compressive sampling matching

pursuit (CoSaMP)

. iterative hard thresholding

(IHT)

IHT: x (n+1) = Hk(x (n) + AT (y − Ax (n)))
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StoIHT

1

1Nguyen, Needell, Woolf, IEEE Transactions on Information Theory ’17
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Asynchronous Parallelization

Asynchronous approaches: popular when the objective functions are

sparse in x

. all cores run simultaneously accessing and updating shared memory

as necessary

. eliminates idle time of synchronous approaches

Challenge: objective of minx∈RN
1
m‖Ax− y‖2 s.t. ‖x‖0≤ s is dense in x

. likely that same non-zero entries are updated from one iteration to

the next

. a slow core could easily “undo” the progress of previous updates by

faster cores
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Asynchronous StoIHT

2

2Needell, Woolf, Proc. Information Theory and Applications ’17

6



Bayesian Asynchronous StoIHT

Require: Number of subproblems, M, and probability of selection p(B).

The reliability score distribution parameters, β̂1
i and β̂0

i , and the tally

scores parameters, â1n and â0n, are available to each processor.

Each processor performs the following at each iteration:

1: randomize: select Bt ∈ [M] with probability p(Bt)

2: proxy: b(t) = x (t) + γ
Mp(Bt)

A∗Bt
(yBt − ABtx (t))

3: identify: Ŝ(t) = supps(b(t)) and T̃ (t) = supps(φ)

4: estimate: x (t+1) = b(t)

Ŝ(t)∪T̃ (t)

5: repeat

6: update EQ{uni}{uni} = Q{uni = 1}
7: update β̂1

i and β̂0
i , â1n and â0n

8: until convergence

9: update φ

10: t = t + 1

2Zaeemzadeh, H., Rahnavard, Needell, Proc. 49th Asilomar Conf. on Signals,

Systems and Computers ’18 7



Experimental Convergence

8



Tools for Analysis

First step: analyze IHT variant running on each node of parallel system

IHTk,k̃ : x (n+1) = Hk,k̃(x (n) + AT (y − Ax (n)))

Non-Symmetric Isometry Property:

(1− βk)‖z‖22≤ ‖Az‖22≤ ‖z‖22 for all k-sparse z
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Convergence of IHTk,k̃

Theorem (H., Needell, Zaeemzadeh, Rahnavard ’19+)

If A has the non-symmetric restricted isometry property with β3k+2k̃ <
1
8 ,

then in iteration n, the IHTk,k̃ algorithms with input observations

y = Ax + e recover the approximation x(n) with

‖x− x(n)‖≤ 2−n‖xk‖+5‖x− xk‖+ 4√
k
‖x− xk‖1+4‖e‖.
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An Improved Scenario

Theorem (H., Needell, Zaeemzadeh, Rahnavard ’19+)

Suppose the signal x has constant values on its support, and the k̃

indices selected (non-greedily) by the IHTk,k̃ algorithm each lie uniformly

in the support of x with probability p. If A has the non-symmetric

restricted isometry property with β3k+2k̃ <
1
8 , then in iteration n, the

IHTk,k̃ algorithms with input observations y = Ax + e recover the

approximation x(n) with

Ek̃‖x− x(n)‖ ≤ 2−n‖x‖+5Ek̃‖x− x̃(n)‖

+
4√
k
Ek̃‖x− x̃(n)‖1+4‖e‖

≤ 2−n‖x‖+
(

5α +
4α√
k

)
‖x‖1+4‖e‖

where α =
(
|supp(x)|−k
|supp(x)|

)(
|supp(x)|−pk̃
|supp(x)|

)
.
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Experimental Convergence of IHTk,k̃

Figure 1: Plot of error ‖x− x(n)‖ vs. iteration for 100 iterations of IHTk,k̃ with

various probabilities p that the k̃ indices lie in supp(x).
12



Rate of Support Intersection
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Figure 2: The rate at which the shared indices between nodes lie in the true

support of signal x for iterations of (a) AStoIHT and (b) BAStoIHT.
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Conclusions and Future Work

. provided a convergence analysis for an IHT variant

. identified scenario when IHT variant has potentially faster

convergence

. provided heuristic for why asynchronous versions of StoIHT converge

faster than non-parallelized version

. analyze StoIHTk,k̃

. extend to non-heuristic analysis of Asynchronous StoIHT
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Thanks for listening!

Questions?
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