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Nonnegative Matrix Factorization (NMF)

≈XN
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AN

k

Sk
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min
A∈RN×k

≥0
,S∈Rk×M

≥0

‖X− AS‖2F

Problem Setup:

X ∈ RN×M
≥0 : data matrix

A ∈ RN×k
≥0 : features matrix

S ∈ Rk×M
≥0 : coefficients matrix

k: user chosen parameter

Problem Challenges:

. nonconvex in A and S,

NP-hard [Vavasis ’08]

. interpretability of factors

dependent upon k
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NMF

Applications:

. low-rank approximation

. clustering

. topic modeling

. feature extraction

Methods:

. multiplicative updates

. alternating nonnegative

least squares

. many others

3



NMF

Applications:

. low-rank approximation

. clustering

. topic modeling

. feature extraction

Methods:

. multiplicative updates

. alternating nonnegative

least squares

. many others

3



NMF

Applications:

. low-rank approximation

. clustering

. topic modeling

. feature extraction

Methods:

. multiplicative updates

. alternating nonnegative

least squares

. many others

3



NMF

Applications:

. low-rank approximation

. clustering

. topic modeling

. feature extraction

Methods:

. multiplicative updates

. alternating nonnegative

least squares

. many others

3



NMF

Applications:

. low-rank approximation

. clustering

. topic modeling

. feature extraction

Methods:

. multiplicative updates

. alternating nonnegative

least squares

. many others

3



NMF

Applications:

. low-rank approximation

. clustering

. topic modeling

. feature extraction

Methods:

. multiplicative updates

. alternating nonnegative

least squares

. many others

3



NMF

Applications:

. low-rank approximation

. clustering

. topic modeling

. feature extraction

Methods:

. multiplicative updates

. alternating nonnegative

least squares

. many others

3



NMF

Applications:

. low-rank approximation

. clustering

. topic modeling

. feature extraction

Methods:

. multiplicative updates

. alternating nonnegative

least squares

. many others

3



(Semi)supervised NMF

Goal: Incorporate known label information into problem.

Y

P
:

cl
as

se
s

M

min
A∈RN×k

≥0
,S∈Rk×M

≥0
,B∈RP×k

≥0

‖W � (X− AS)‖2F+λ‖L� (Y − BS)‖2F

Problem Setup:

Y ∈ {0, 1}P×M≥0 : label matrix

P: number of classes

W ∈ {0, 1}N×M≥0 : data indicator

L ∈ {0, 1}P×M≥0 : label indicator

λ: user defined hyperparameter

Problem Advantages:

. use of label information

. can extend multiplicative

updates method to SSNMF
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Hierarchical NMF

Goal: Discover hierarchical topic structure within X.

X A(0)

S(0)

A(0)

A(1)
S(1)

N

M

N

k(0)

k
(0
)

M

N

k(0)

k
(0
)

k(1)

k
(1
)

M

≈ ≈

X ≈ A(0)S(0)

X ≈ A(0)A(1)S(1)

...

X ≈ A(0)A(1) . . .A(L)S(L)

Problem Setup:

. k(0), k(1), . . . , k(L): user defined parameters

. k(`): supertopics collecting k(`−1) subtopics

Problem Challenges:

. {k(i)} must be chosen

. error propagates through layers
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Hierarchical NMF
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Deep NMF

Goal: Exploit similarities between neural networks and hierarchical NMF.

. [Flenner, Hunter ’18]

• introduces nonlinear pooling operator after each layer

• introduces multiplicative updates method meant to backpropagate

. [Trigeorgis, Bousmalis, Zafeiriou, Schuller ’16]

• relaxes some of nonnegativity constraints in hNMF

. [Le Roux, Hershey, Weninger ’15]

• introduces NMF backpropagation algorithm with “unfolding” (no

hierarchy)

. [Sun, Nasrabadi, Tran ’17]

• similar method lacking nonnegativity constraints
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Our method: Neural NMF

Goal: Develop true backpropagation algorithm for hNMF model.

. Regard the A matrices as independent variables, determine the S

matrices from the A matrices.

. Define q(X,A) := argminS≥0‖X− AS‖2F .

O 
U 
T 
P 
U 
T 
S

Classification 
LayersS(1) = q(S(0), A(1))

X S(0)
S(0) = q(X, A(0))

S(1) S(ℒ)

. Pin the values of S to those of A by recursively setting

S(`) := q(S(`−1),A(`)).

. Can we compute derivatives and backpropagate?
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Neural NMF Backpropagation

. Differentiate q function and apply

chain rule.

. Flexible to cost function (e.g.,

supervision).

. Backpropagate and update all A

matrices simultaneously via GD or

SGD.
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Neural NMF

Method 1 Neural NMF

Require: data matrix X ∈ RN×M , number of layers L, step size γ, cost

function C , initial matrices A(i) for i = 0, ...,L
procedure ForwardPropagation(A(0), . . . ,A(L))

for i := 0...L do

S(i) ← q(A(i),S(i−1))

ForwardPropagation(A(0), . . . ,A(L))

while not converged do

for i := 0...L do

A(i) ← A(i) − γ ∗ ∂C
∂A(i) . Gradient descent

A(i) ← A
(i)
+ . Project onto positive orthant

ForwardPropagation(A(0), . . . ,A(L))
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Experimental Results

. unsupervised reconstruction with two-layer structure

(k(0) = 9, k(1) = 4)
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Experimental Results

. semisupervised reconstruction (40% labels) with three-layer

structure (k(0) = 9, k(1) = 4, k(2) = 2)
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Experimental Results

Note that despite reconstruction error increasing as layers increase (since

the final rank decreases), the topic structure can be resolved from the

intermediate factorizations.

. unsupervised reconstruction with two-layer structure

(k(0) = 9, k(1) = 4)

13



Experimental Results
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Experimental Results

Table 1: Reconstruction error / classification accuracy

Layers Hier. NMF Deep NMF Neural NMF

Unsuper.

1 0.053 0.031 0.029

2 0.399 0.414 0.310

3 0.860 0.838 0.492

Semisuper.

1 0.049 / 0.933 0.031 / 0.947 0.042 / 1

2 0.374 / 0.926 0.394 / 0.911 0.305 / 1

3 0.676 / 0.930 0.733 / 0.930 0.496 / 0.990

Supervised

1 0.052 / 0.960 0.042 / 0.962 0.042 / 1

2 0.311 / 0.984 0.310 / 0.984 0.307 / 1

3 0.495 / 1 0.494 / 1 0.498 / 1
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Conclusions and Future Work

. presented a novel method for multilayer NMF that incorporates the

backpropagation technique from deep learning to minimize error

accumulation

. exhibited preliminary tests on toy datasets showing the proposed

method outperforms existing multilayer NMF algorithms.

. compare our method and others on various datasets to find precise

regimes in which we offer improvement

. extend to method for hierarchical nonnegative tensor factorization
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Thanks for listening!

Questions?
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