Neural Nonnegative Matrix Factorization for Hierarchical Multilayer Topic Modeling

Jamie Haddock

CAMSAP 2019,
December 16, 2019
Computational and Applied Mathematics
UCLA

joint with Mengdi Gao, Denali Molitor, Deanna Needell, Eli Sadovnik, Tyler Will, Runyu Zhang

Nonnegative Matrix Factorization (NMF)

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{k \times M}}\|\mathbf{X}-\mathbf{A S}\|_{F}^{2}
$$

Problem Setup:
Problem Challenges:

Nonnegative Matrix Factorization (NMF)

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{k \times M}}\|\mathbf{X}-\mathbf{A} \mathbf{S}\|_{F}^{2}
$$

Problem Setup:
Problem Challenges:
$\mathbf{X} \in \mathbb{R}_{\geq 0}^{N \times M}$: data matrix

Nonnegative Matrix Factorization (NMF)

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{k \times M}}\|\mathbf{X}-\mathbf{A} \mathbf{S}\|_{F}^{2}
$$

Problem Setup:

Problem Challenges:

$\mathbf{X} \in \mathbb{R}_{>0}^{N \times M}$: data matrix
$\mathbf{A} \in \mathbb{R}_{\geq 0}^{\bar{N} \times k}$: features matrix

Nonnegative Matrix Factorization (NMF)

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{\mathbb{R} \times M}}\|\mathbf{X}-\mathbf{A S}\|_{F}^{2}
$$

Problem Setup:
Problem Challenges:
$\mathbf{X} \in \mathbb{R}_{>0}^{N \times M}$: data matrix
$\mathbf{A} \in \mathbb{R}_{>0}^{\bar{N} \times k}$: features matrix
$\mathbf{S} \in \mathbb{R}_{\geq 0}^{k \times M}:$ coefficients matrix

Nonnegative Matrix Factorization (NMF)

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{\mathbb{R} \times M}}\|\mathbf{X}-\mathbf{A S}\|_{F}^{2}
$$

Problem Setup:
Problem Challenges:
$\mathbf{X} \in \mathbb{R}_{>0}^{N \times M}$: data matrix
$\mathbf{A} \in \mathbb{R}_{\geq 0}^{\bar{N} \times k}$: features matrix
$\mathbf{S} \in \mathbb{R}_{\geq 0}^{k \times M}$: coefficients matrix
k : user chosen parameter

Nonnegative Matrix Factorization (NMF)

$$
\min _{\substack{A \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{\mathbb{R} \times M}}}\|\mathbf{X}-\mathbf{A S}\|_{F}^{2}
$$

Problem Setup:
$\mathbf{X} \in \mathbb{R}_{>0}^{N \times M}$: data matrix
$\mathbf{A} \in \mathbb{R}_{>0}^{\bar{N} \times k}$: features matrix
$\mathbf{S} \in \mathbb{R}_{\geq 0}^{k \times M}:$ coefficients matrix
k : user chosen parameter

Problem Challenges:

\triangleright nonconvex in \mathbf{A} and \mathbf{S}, NP-hard [Vavasis '08]

Nonnegative Matrix Factorization (NMF)

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{\kappa \times M}}\|\mathbf{X}-\mathbf{A S}\|_{F}^{2}
$$

Problem Setup:
$\mathbf{X} \in \mathbb{R}_{>0}^{N \times M}$: data matrix
$\mathbf{A} \in \mathbb{R}_{\geq 0}^{\bar{N} \times k}$: features matrix
$\mathbf{S} \in \mathbb{R}_{\geq 0}^{k \times M}:$ coefficients matrix
k : user chosen parameter

Problem Challenges:

\triangleright nonconvex in \mathbf{A} and \mathbf{S}, NP-hard [Vavasis '08]
\triangleright interpretability of factors dependent upon k

Nonnegative Matrix Factorization (NMF)

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{k \times M}}\|\mathbf{X}-\mathbf{A S}\|_{F}^{2}
$$

Problem Setup:
$\mathbf{X} \in \mathbb{R}_{>0}^{N \times M}$: data matrix
$A \in \mathbb{R}_{\geq 0}^{\bar{N} \times k}$: features matrix
$\mathbf{S} \in \mathbb{R}_{\geq 0}^{k \times M}:$ coefficients matrix
k : user chosen parameter

Problem Challenges:

\triangleright nonconvex in \mathbf{A} and \mathbf{S}, NP-hard [Vavasis '08]
\triangleright interpretability of factors dependent upon k

Applications:
Methods:

NMF

Applications:

Methods:

\triangleright low-rank approximation

NMF

Applications:

Methods:

\triangleright low-rank approximation
\triangleright clustering

NMF

Applications:

Methods:

\triangleright low-rank approximation
\triangleright clustering
\triangleright topic modeling

NMF

Applications:

Methods:

- low-rank approximation
\triangleright clustering
\triangleright topic modeling
\triangleright feature extraction

NMF

Applications:

\triangleright low-rank approximation
\triangleright clustering
\triangleright topic modeling
\triangleright feature extraction

Methods:

\triangleright multiplicative updates

NMF

Applications:

\triangleright low-rank approximation
\triangleright clustering
\triangleright topic modeling
\triangleright feature extraction

Methods:

\triangleright multiplicative updates
\triangleright alternating nonnegative least squares

NMF

Applications:

\triangleright low-rank approximation
\triangleright clustering
\triangleright topic modeling
\triangleright feature extraction

Methods:

\triangleright multiplicative updates
\triangleright alternating nonnegative least squares
\triangleright many others

(Semi)supervised NMF

Goal: Incorporate known label information into problem.

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{\times M}, \mathbf{B} \in \mathbb{R}_{\geq 0}^{P \times k}}\|\mathbf{W} \odot(\mathbf{X}-\mathbf{A S})\|_{F}^{2}+\lambda\|\mathbf{L} \odot(\mathbf{Y}-\mathbf{B S})\|_{F}^{2}
$$

Problem Setup:

Problem Advantages:

(Semi)supervised NMF

Goal: Incorporate known label information into problem.

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{\mathbb{R}^{\times M}, \mathbf{B} \in \mathbb{R}_{\geq 0}^{P \times \times}} \mid}\|\mathbf{W} \odot(\mathbf{X}-\mathbf{A S})\|_{F}^{2}+\lambda\|\mathbf{L} \odot(\mathbf{Y}-\mathbf{B S})\|_{F}^{2}
$$

Problem Setup:

$\mathbf{Y} \in\{0,1\}_{\geq 0}^{P \times M}$: label matrix
Problem Advantages:

(Semi)supervised NMF

Goal: Incorporate known label information into problem.

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{\mathbb{R}^{\times M}, \mathbf{B} \in \mathbb{R}_{\geq 0}^{P \times \times}} \mid}\|\mathbf{W} \odot(\mathbf{X}-\mathbf{A S})\|_{F}^{2}+\lambda\|\mathbf{L} \odot(\mathbf{Y}-\mathbf{B S})\|_{F}^{2}
$$

Problem Setup:

$\mathbf{Y} \in\{0,1\}_{\geq 0}^{P \times M}$: label matrix
Problem Advantages:
P : number of classes

(Semi)supervised NMF

Goal: Incorporate known label information into problem.

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{\mathbb{R}^{\times M}, \mathbf{B} \in \mathbb{R}_{\geq 0}^{P \times \times}} \mid}\|\mathbf{W} \odot(\mathbf{X}-\mathbf{A S})\|_{F}^{2}+\lambda\|\mathbf{L} \odot(\mathbf{Y}-\mathbf{B S})\|_{F}^{2}
$$

Problem Setup:

$\mathbf{Y} \in\{0,1\}_{\geq 0}^{P \times M}$: label matrix
Problem Advantages:
P : number of classes
$\mathbf{W} \in\{0,1\}_{\geq 0}^{N \times M}:$ data indicator

(Semi)supervised NMF

Goal: Incorporate known label information into problem.

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{\mathbb{R}^{\times M}, \mathbf{B} \in \mathbb{R}_{\geq 0}^{P \times \times}} \mid}\|\mathbf{W} \odot(\mathbf{X}-\mathbf{A S})\|_{F}^{2}+\lambda\|\mathbf{L} \odot(\mathbf{Y}-\mathbf{B S})\|_{F}^{2}
$$

Problem Setup:

$\mathbf{Y} \in\{0,1\}_{\geq 0}^{P \times M}$: label matrix
Problem Advantages:
P : number of classes
$\mathbf{W} \in\{0,1\}_{>0}^{N \times M}:$ data indicator
$\mathbf{L} \in\{0,1\}_{\geq 0}^{P \times M}:$ label indicator

(Semi)supervised NMF

Goal: Incorporate known label information into problem.

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{\mathbb{R}^{\times M}, \mathbf{B} \in \mathbb{R}_{\geq 0}^{P \times \times}} \mid}\|\mathbf{W} \odot(\mathbf{X}-\mathbf{A S})\|_{F}^{2}+\lambda\|\mathbf{L} \odot(\mathbf{Y}-\mathbf{B S})\|_{F}^{2}
$$

Problem Setup:

$\mathbf{Y} \in\{0,1\}_{\geq 0}^{P \times M}$: label matrix
Problem Advantages:
P : number of classes
$\mathbf{W} \in\{0,1\}_{>0}^{N \times M}:$ data indicator
$\mathbf{L} \in\{0,1\}_{\geq 0}^{P \overline{\times} M}$: label indicator
λ : user defined hyperparameter

(Semi)supervised NMF

Goal: Incorporate known label information into problem.

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{k_{\geq}^{\times M}, \mathbf{B} \in \mathbb{R}_{\geq 0}^{P \times \times}} \mid}\|\mathbf{W} \odot(\mathbf{X}-\mathbf{A S})\|_{F}^{2}+\lambda\|\mathbf{L} \odot(\mathbf{Y}-\mathbf{B S})\|_{F}^{2}
$$

Problem Setup:

$\mathbf{Y} \in\{0,1\}_{\geq 0}^{P \times M}$: label matrix
P : number of classes
$\mathbf{W} \in\{0,1\}_{\geq 0}^{N \times M}:$ data indicator
$\mathbf{L} \in\{0,1\}_{\geq 0}^{P \overline{\times} M}$: label indicator
λ : user defined hyperparameter

Problem Advantages:

\triangleright use of label information

(Semi)supervised NMF

Goal: Incorporate known label information into problem.

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{N \times k}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{\mathbb{R}^{\times M}, \mathbf{B} \in \mathbb{R}_{\geq 0}^{P \times \times}} \mid}\|\mathbf{W} \odot(\mathbf{X}-\mathbf{A S})\|_{F}^{2}+\lambda\|\mathbf{L} \odot(\mathbf{Y}-\mathbf{B S})\|_{F}^{2}
$$

Problem Setup:

$\mathbf{Y} \in\{0,1\}_{\geq 0}^{P \times M}$: label matrix
P : number of classes
$\mathbf{W} \in\{0,1\}_{\geq 0}^{N \times M}:$ data indicator
$\mathbf{L} \in\{0,1\}_{\geq 0}^{P \overline{\times} M}$: label indicator
λ : user defined hyperparameter

Problem Advantages:

\triangleright use of label information
\triangleright can extend multiplicative updates method to SSNMF

Hierarchical NMF

Goal: Discover hierarchical topic structure within \mathbf{X}.

Problem Setup:

Problem Challenges:

Hierarchical NMF

Goal: Discover hierarchical topic structure within \mathbf{X}.

Problem Setup:

$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{S}^{(0)}$
$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{A}^{(1)} \mathbf{S}^{(1)}$

Problem Challenges:

$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{A}^{(1)} \ldots \mathbf{A}^{(\mathcal{L})} \mathbf{S}^{(\mathcal{L})}$

Hierarchical NMF

Goal: Discover hierarchical topic structure within \mathbf{X}.

Problem Setup:

$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{S}^{(0)}$
$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{A}^{(1)} \mathbf{S}^{(1)}$
$\triangleright k^{(0)}, k^{(1)}, \ldots, k^{(\mathcal{L})}$: user defined parameters

Problem Challenges:

$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{A}^{(1)} \ldots \mathbf{A}^{(\mathcal{L})} \mathbf{S}^{(\mathcal{L})}$

Hierarchical NMF

Goal: Discover hierarchical topic structure within \mathbf{X}.

Problem Setup:

$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{S}^{(0)}$
$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{A}^{(1)} \mathbf{S}^{(1)}$
$\triangleright k^{(0)}, k^{(1)}, \ldots, k^{(\mathcal{L})}$: user defined parameters
$\triangleright k^{(\ell)}$: supertopics collecting $k^{(\ell-1)}$ subtopics
Problem Challenges:
$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{A}^{(1)} \ldots \mathbf{A}^{(\mathcal{L})} \mathbf{S}^{(\mathcal{L})}$

Hierarchical NMF

Goal: Discover hierarchical topic structure within \mathbf{X}.

Problem Setup:

$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{S}^{(0)}$
$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{A}^{(1)} \mathbf{S}^{(1)}$
$\triangleright k^{(0)}, k^{(1)}, \ldots, k^{(\mathcal{L})}$: user defined parameters
$\triangleright k^{(\ell)}$: supertopics collecting $k^{(\ell-1)}$ subtopics

Problem Challenges:

$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{A}^{(1)} \ldots \mathbf{A}^{(\mathcal{L})} \mathbf{S}^{(\mathcal{L})}$
$\triangleright\left\{k^{(i)}\right\}$ must be chosen

Hierarchical NMF

Goal: Discover hierarchical topic structure within \mathbf{X}.

Problem Setup:

$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{S}^{(0)}$
$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{A}^{(1)} \mathbf{S}^{(1)}$
\vdots
$\mathbf{X} \approx \mathbf{A}^{(0)} \mathbf{A}^{(1)} \ldots \mathbf{A}^{(\mathcal{L})} \mathbf{S}^{(\mathcal{L})}$
$\triangleright k^{(0)}, k^{(1)}, \ldots, k^{(\mathcal{L})}$: user defined parameters
$\triangleright k^{(\ell)}$: supertopics collecting $k^{(\ell-1)}$ subtopics

Problem Challenges:

$\triangleright\left\{k^{(i)}\right\}$ must be chosen
\triangleright error propagates through layers

Deep NMF

Goal: Exploit similarities between neural networks and hierarchical NMF.

Deep NMF

Goal: Exploit similarities between neural networks and hierarchical NMF.

- [Flenner, Hunter '18]
- introduces nonlinear pooling operator after each layer
- introduces multiplicative updates method meant to backpropagate

Deep NMF

Goal: Exploit similarities between neural networks and hierarchical NMF.
\triangleright [Flenner, Hunter '18]

- introduces nonlinear pooling operator after each layer
- introduces multiplicative updates method meant to backpropagate
\triangleright [Trigeorgis, Bousmalis, Zafeiriou, Schuller '16]
- relaxes some of nonnegativity constraints in hNMF

Deep NMF

Goal: Exploit similarities between neural networks and hierarchical NMF.
\triangleright [Flenner, Hunter '18]

- introduces nonlinear pooling operator after each layer
- introduces multiplicative updates method meant to backpropagate
\triangleright [Trigeorgis, Bousmalis, Zafeiriou, Schuller '16]
- relaxes some of nonnegativity constraints in hNMF
\triangleright [Le Roux, Hershey, Weninger '15]
- introduces NMF backpropagation algorithm with "unfolding" (no hierarchy)

Deep NMF

Goal: Exploit similarities between neural networks and hierarchical NMF.
\triangleright [Flenner, Hunter '18]

- introduces nonlinear pooling operator after each layer
- introduces multiplicative updates method meant to backpropagate
\triangleright [Trigeorgis, Bousmalis, Zafeiriou, Schuller '16]
- relaxes some of nonnegativity constraints in hNMF
\triangleright [Le Roux, Hershey, Weninger '15]
- introduces NMF backpropagation algorithm with "unfolding" (no hierarchy)
- [Sun, Nasrabadi, Tran '17]
- similar method lacking nonnegativity constraints

Our method: Neural NMF

Goal: Develop true backpropagation algorithm for hNMF model.

Our method: Neural NMF

Goal: Develop true backpropagation algorithm for hNMF model.
\triangleright Regard the A matrices as independent variables, determine the \mathbf{S} matrices from the \mathbf{A} matrices.

Our method: Neural NMF

Goal: Develop true backpropagation algorithm for hNMF model.
\triangleright Regard the \mathbf{A} matrices as independent variables, determine the \mathbf{S} matrices from the \mathbf{A} matrices.
\triangleright Define $q(\mathbf{X}, \mathbf{A}):=\operatorname{argmin}_{s \geq 0}\|\mathbf{X}-\mathbf{A S}\|_{F}^{2}$.

Our method: Neural NMF

Goal: Develop true backpropagation algorithm for hNMF model.
\triangleright Regard the \mathbf{A} matrices as independent variables, determine the \mathbf{S} matrices from the \mathbf{A} matrices.
\triangleright Define $q(\mathbf{X}, \mathbf{A}):=\operatorname{argmin}_{S \geq 0}\|\mathbf{X}-\mathbf{A S}\|_{F}^{2}$.

Our method: Neural NMF

Goal: Develop true backpropagation algorithm for hNMF model.
\triangleright Regard the A matrices as independent variables, determine the \mathbf{S} matrices from the \mathbf{A} matrices.
\triangleright Define $q(\mathbf{X}, \mathbf{A}):=\operatorname{argmin}_{S \geq 0}\|\mathbf{X}-\mathbf{A S}\|_{F}^{2}$.

\triangleright Pin the values of \mathbf{S} to those of \mathbf{A} by recursively setting $\mathbf{S}^{(\ell)}:=q\left(\mathbf{S}^{(\ell-1)}, \mathbf{A}^{(\ell)}\right)$.

Our method: Neural NMF

Goal: Develop true backpropagation algorithm for hNMF model.
\triangleright Regard the \mathbf{A} matrices as independent variables, determine the \mathbf{S} matrices from the \mathbf{A} matrices.
\triangleright Define $q(\mathbf{X}, \mathbf{A}):=\operatorname{argmin}_{S \geq 0}\|\mathbf{X}-\mathbf{A S}\|_{F}^{2}$.

\triangleright Pin the values of \mathbf{S} to those of \mathbf{A} by recursively setting $\mathbf{S}^{(\ell)}:=q\left(\mathbf{S}^{(\ell-1)}, \mathbf{A}^{(\ell)}\right)$.
\triangleright Can we compute derivatives and backpropagate?

Neural NMF Backpropagation

YES CATH

Neural NMF Backpropagation

YAS CAN

\triangleright Differentiate q function and apply chain rule.

Neural NMF Backpropagation

\triangleright Differentiate q function and apply chain rule.
\triangleright Flexible to cost function (e.g., supervision).

Neural NMF Backpropagation

\triangleright Differentiate q function and apply chain rule.
\triangleright Flexible to cost function (e.g., supervision).
\triangleright Backpropagate and update all A matrices simultaneously via GD or SGD.

Neural NMF

Method 1 Neural NMF

Require: data matrix $\mathbf{X} \in \mathbb{R}^{N \times M}$, number of layers \mathcal{L}, step size γ, cost function C, initial matrices $\mathbf{A}^{(i)}$ for $i=0, \ldots, \mathcal{L}$ procedure ForwardPropagation $\left(\mathbf{A}^{(0)}, \ldots, \mathbf{A}^{(\mathcal{L})}\right)$

$$
\begin{aligned}
& \text { for } i:=0 \ldots \mathcal{L} \text { do } \\
& \qquad \mathbf{S}^{(i)} \leftarrow q\left(\mathbf{A}^{(i)}, \mathbf{S}^{(i-1)}\right)
\end{aligned}
$$

ForwardPropagation $\left(\mathbf{A}^{(0)}, \ldots, \mathbf{A}^{(\mathcal{L})}\right)$
while not converged do

$$
\text { for } i:=0 \ldots \mathcal{L} \text { do }
$$

$$
\mathbf{A}^{(i)} \leftarrow \mathbf{A}^{(i)}-\gamma * \frac{\partial C}{\partial \mathbf{A}^{(i)}}
$$

$$
\mathbf{A}^{(i)} \leftarrow \mathbf{A}_{+}^{(i)} \quad \triangleright \text { Project onto positive orthant }
$$

$$
\text { ForwardPropagation }\left(\mathbf{A}^{(0)}, \ldots, \mathbf{A}^{(\mathcal{L})}\right)
$$

Experimental Results

Original

hNMF

Deep NMF

Neural NMF

\triangleright unsupervised reconstruction with two-layer structure

$$
\left(k^{(0)}=9, k^{(1)}=4\right)
$$

Experimental Results

Original

hNMF

Deep NMF

Neural NMF

\triangleright semisupervised reconstruction (40% labels) with three-layer structure $\left(k^{(0)}=9, k^{(1)}=4, k^{(2)}=2\right)$

Experimental Results

Note that despite reconstruction error increasing as layers increase (since the final rank decreases), the topic structure can be resolved from the intermediate factorizations.

\triangleright unsupervised reconstruction with two-layer structure $\left(k^{(0)}=9, k^{(1)}=4\right)$

Experimental Results

Note that despite reconstruction error increasing as layers increase (since the final rank decreases), the topic structure can be resolved from the intermediate factorizations.

\triangleright semisupervised reconstruction (40% labels) with three-layer structure $\left(k^{(0)}=9, k^{(1)}=4, k^{(2)}=2\right)$

Experimental Results

Table 1: Reconstruction error / classification accuracy

	Layers	Hier. NMF	Deep NMF	Neural NMF
Unsuper.	1	0.053	0.031	0.029
	2	0.399	0.414	$\mathbf{0 . 3 1 0}$
	3	0.860	0.838	$\mathbf{0 . 4 9 2}$
Semisuper.	1	$0.049 / 0.933$	$0.031 / 0.947$	$0.042 / \mathbf{1}$
	2	$0.374 / 0.926$	$0.394 / 0.911$	$\mathbf{0 . 3 0 5} / \mathbf{1}$
	3	$0.676 / 0.930$	$0.733 / 0.930$	$\mathbf{0 . 4 9 6} / \mathbf{0 . 9 9 0}$
Supervised	1	$0.052 / 0.960$	$0.042 / 0.962$	$0.042 / \mathbf{1}$
	2	$0.311 / 0.984$	$0.310 / 0.984$	$0.307 / 1$
	3	$0.495 / 1$	$0.494 / 1$	$0.498 / 1$

Conclusions and Future Work

Conclusions and Future Work

\triangleright presented a novel method for multilayer NMF that incorporates the backpropagation technique from deep learning to minimize error accumulation

Conclusions and Future Work

\triangleright presented a novel method for multilayer NMF that incorporates the backpropagation technique from deep learning to minimize error accumulation
\triangleright exhibited preliminary tests on toy datasets showing the proposed method outperforms existing multilayer NMF algorithms.

Conclusions and Future Work

\triangleright presented a novel method for multilayer NMF that incorporates the backpropagation technique from deep learning to minimize error accumulation
\triangleright exhibited preliminary tests on toy datasets showing the proposed method outperforms existing multilayer NMF algorithms.
\triangleright compare our method and others on various datasets to find precise regimes in which we offer improvement

Conclusions and Future Work

\triangleright presented a novel method for multilayer NMF that incorporates the backpropagation technique from deep learning to minimize error accumulation
\triangleright exhibited preliminary tests on toy datasets showing the proposed method outperforms existing multilayer NMF algorithms.
\triangleright compare our method and others on various datasets to find precise regimes in which we offer improvement
\triangleright extend to method for hierarchical nonnegative tensor factorization

Thanks for listening!

Questions?

[1] Jennifer Flenner and Blake Hunter. A deep non-negative matrix factorization neural network, 2018. Unpublished.
[2] Jonathan Le Roux, John R Hershey, and Felix Weninger. Deep nmf for speech separation. In Int. Conf. Acoust. Spee., pages 66-70. IEEE, 2015.
[3] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
[4] H. Lee, J. Yoo, and S. Choi. Semi-supervised nonnegative matrix factorization. IEEE Signal Proc. Let., 17(1):4-7, Jan 2010.
[5] Xiaoxia Sun, Nasser M. Nasrabadi, and Trac D. Tran. Supervised multilayer sparse coding networks for image classification. CoRR, abs/1701.08349, 2017.
[6] George Trigeorgis, Konstantinos Bousmalis, Stefanos Zafeiriou, and Björn W Schuller. A deep matrix factorization method for learning attribute representations. IEEE T. Pattern Anal., 39(3):417-429, 2016.

