Wolfe's Combinatorial Method is Exponential

Jamie Haddock

May 17, 2018

Graduate Group in Applied Mathematics UC Davis

joint with Jesús De Loera and Luis Rademacher https://arxiv.org/abs/1710.02608

Projection Algorithms for Convex and Combinatorial Optimization

Linear Feasibility (LF): Given a rational matrix A and a rational vector \mathbf{b} , if $P_{A,\mathbf{b}} := {\mathbf{x} : A\mathbf{x} \leq \mathbf{b}}$ is nonempty, output a rational $\mathbf{x} \in P_{A,\mathbf{b}}$, otherwise output NO.

Minimum Norm Point (MNP): Given rational points $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_m \in \mathbb{R}^n$ defining $P := \operatorname{conv}(\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_m)$, output rational $\mathbf{x} = \operatorname{argmin}_{\mathbf{a} \in P} \|\mathbf{q}\|^2$.

Iterative Projection Methods for LF

Motzkin's Method (MM)

On Motzkin's Method for Inconsistent Linear Systems (joint with D. Needell) https://arxiv.org/abs/1802.03126

Randomized Kaczmarz (RK) Method

Randomized Projection Methods for Corrupted Linear Systems (joint with D. Needell) https://arxiv.org/abs/1803.08114

Sampling Kaczmarz-Motzkin (SKM) Methods

 A Sampling Kaczmarz-Motzkin Algorithm for Linear Feasibility (joint with J. A. De Loera and D. Needell)

SIAM Journal on Scientific Computing, 2017 https://arxiv.org/abs/1605.01418

Wolfe's Combinatorial Methods for MNP

 \triangleright

- $p_3 = p_1$ $p_2 = p_1$ $p_2 = p_2$
- The Minimum Euclidean-Norm Point on a Convex Polytope: Wolfe's Combinatorial Algorithm is Exponential (joint J. A. De Loera and L. Rademacher) STOC, 2018

https://arxiv.org/abs/1710.02608

LF:

- ▷ linear programming
- ▷ support vector machine
- ▷ linear equations

MNP:

- submodular function minimization
- ▷ colorful linear programming

Theorem (De Loera, H., Rademacher '17)

LF reduces to MNP on a simplex in strongly-polynomial time.

Minimum Norm Point (MNP(P))

We are interested in solving the problem (MNP(P)):

 $\min_{\mathbf{x}\in P} \|\mathbf{x}\|_2$

where *P* is a polytope, and determining the minimum dimension face, *F*, which achieves distance $\|\mathbf{x}\|_2$.

We are interested in solving the problem (MNP(P)):

 $\min_{\mathbf{x}\in P} \|\mathbf{x}\|_2$

where *P* is a polytope, and determining the minimum dimension face, *F*, which achieves distance $\|\mathbf{x}\|_2$.

Reminder: A *polytope*, *P*, is the convex hull of points $\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m$,

$$P = \left\{ \sum_{i=1}^{m} \lambda_i \mathbf{p}_i : \sum_{i=1}^{m} \lambda_i = 1, \lambda_i \ge 0 \text{ for all } i = 1, 2, ..., m \right\}.$$

Minimum Norm Point in Polytope

0•

Minimum Norm Point in Polytope

7

Minimum Norm Point in Polytope

• arbitrary polytope projection

- arbitrary polytope projection
- nearest point problem for transportation polytopes

- arbitrary polytope projection
- nearest point problem for transportation polytopes
- subroutine in colorful linear programming

- arbitrary polytope projection
- nearest point problem for transportation polytopes
- subroutine in colorful linear programming
- subroutine in submodular function minimization

- arbitrary polytope projection
- nearest point problem for transportation polytopes
- subroutine in colorful linear programming
- subroutine in submodular function minimization
- machine learning vision, large-scale learning

- arbitrary polytope projection
- nearest point problem for transportation polytopes
- subroutine in colorful linear programming
- subroutine in submodular function minimization
- machine learning vision, large-scale learning
- compute distance to polytope

Linear programming reduces to distance to a simplex in vertex-representation in strongly-polynomial time.

Linear programming reduces to distance to a simplex in vertex-representation in strongly-polynomial time.

If a strongly-polynomial method for projection onto a polytope exists then this gives a strongly-polynomial method for LP.

Linear programming reduces to distance to a simplex in vertex-representation in strongly-polynomial time.

If a strongly-polynomial method for projection onto a polytope exists then this gives a strongly-polynomial method for LP.

It was previously known that linear programming reduces to MNP on a polytope in weakly-polynomial time [Fujishige, Hayashi, Isotani '06].

There exists a family of polytopes on which Wolfe's method requires exponential time to compute the MNP.

Theorem (Wolfe '74) Let $P = conv(\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m)$. Then $\mathbf{x} \in P$ is MNP(P) if and only if $\mathbf{x}^T \mathbf{p}_j \ge \|\mathbf{x}\|_2^2$ for all j = 1, 2, ..., m.

Wolfe's Optimality Condition

Theorem (Wolfe '74)

Let $P = conv(\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m)$. Then $\mathbf{x} \in P$ is MNP(P) if and only if

 $\mathbf{x}^T \mathbf{p}_j \ge \|\mathbf{x}\|_2^2$ for all j = 1, 2, ..., m.

Wolfe's Optimality Condition

Theorem (Wolfe '74)

Let $P = conv(\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m)$. Then $\mathbf{x} \in P$ is MNP(P) if and only if

 $\mathbf{x}^T \mathbf{p}_j \ge \|\mathbf{x}\|_2^2$ for all j = 1, 2, ..., m.

Wolfe's Optimality Condition

Theorem (Wolfe '74)

Let $P = conv(\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m)$. Then $\mathbf{x} \in P$ is MNP(P) if and only if

 $\mathbf{x}^T \mathbf{p}_j \ge \|\mathbf{x}\|_2^2$ for all j = 1, 2, ..., m.

Wolfe's Method

Philip Wolfe

- Frank-Wolfe method
- Dantzig-Wolfe decomposition
- simplex method for quadratic programming

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Def: An affinely independent set of points $Q = {\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_k}$ is a *corral* if MNP(aff(Q)) \in relint(conv(Q)).

Note: Singletons are corrals.

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Def: An affinely independent set of points $Q = {\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_k}$ is a *corral* if MNP(aff(Q)) \in relint(conv(Q)).

Note: Singletons are corrals.

Note: There is a corral in P whose convex hull contains MNP(P).
- pivots between corrals which may contain MNP(P)

- pivots between corrals which may contain MNP(P)
- projects onto affine hull of sets to check whether a corral

- pivots between corrals which may contain MNP(P)
- projects onto affine hull of sets to check whether a corral
- optimality criterion checks if correct corral

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = \mathsf{MNP}(\mathsf{aff}(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

 $\mathbf{x} \in \mathbf{P} = \{\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m\}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = \mathsf{MNP}(\mathsf{aff}(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = \mathsf{MNP}(\mathsf{aff}(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while x is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = \mathsf{MNP}(\mathsf{aff}(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_{i} \in \{\mathbf{p} \in \mathbf{P} : \mathbf{x}^{\mathsf{T}}\mathbf{p} < ||\mathbf{x}||_{2}^{2}\}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = \mathsf{MNP}(\mathsf{aff}(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{p_i\}$ $\mathbf{y} = MNP(aff(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ y = MNP(aff(C))while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = \mathsf{MNP}(\mathsf{aff}(C))$ while $y \notin relint(conv(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

return x

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = MNP(aff(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$

 $\begin{aligned} \mathbf{p}_1 &= (0,2) \\ \mathbf{p}_2 &= (3,0) \\ \mathbf{p}_3 &= (-2,1) \end{aligned}$

return x

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while x is not MNP(P) $\mathbf{p}_i \in { \mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2 }$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = MNP(aff(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

 $\mathbf{p}_1 = (0, 2)$ $\mathbf{p}_2 = (3, 0)$ $\mathbf{p}_3 = (-2, 1)$

15

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_{i} \in \{\mathbf{p} \in \mathbf{P} : \mathbf{x}^{\mathsf{T}}\mathbf{p} < ||\mathbf{x}||_{2}^{2}\}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = MNP(aff(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{p_i\}$ $\mathbf{y} = MNP(aff(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

 $\mathbf{x} \in P = \{\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m\}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ y = MNP(aff(C))while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$p_1 = (0, 2) p_2 = (3, 0) p_3 = (-2, 1)$$

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = \mathsf{MNP}(\mathsf{aff}(C))$ while $y \notin relint(conv(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = \mathsf{MNP}(\mathsf{aff}(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $z = argmin ||z - y||_2$ z∈conv(C)∩xy $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

 $C = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = \mathsf{MNP}(\mathsf{aff}(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{p_i\}$ where p_i, z are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

 $C=\{p_2,p_3\}$

 $\mathbf{x} \in P = \{\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m\}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = \mathsf{MNP}(\mathsf{aff}(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

 $C = \{\mathbf{p}_2, \mathbf{p}_3\}$

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = \mathsf{MNP}(\mathsf{aff}(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ y = MNP(aff(C)) $\mathbf{x} = \mathbf{y}$

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

return x

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = \mathsf{MNP}(\mathsf{aff}(C))$ while $y \notin relint(conv(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

 $\mathbf{x} \in P = \{\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m\}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = MNP(aff(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

 $egin{aligned} \mathbf{p}_1 &= (0,2) \ \mathbf{p}_2 &= (3,0) \ \mathbf{p}_3 &= (-2,1) \end{aligned}$

15

 $\mathbf{x} \in P = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m}$ $C = \{x\}$ while x is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = \mathsf{MNP}(\mathsf{aff}(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$ return x

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

 $C = \{\mathbf{p}_2, \mathbf{p}_3\}$

 $\mathbf{x} \in P = \{\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m\}$ $C = \{x\}$ while \mathbf{x} is not MNP(P) $\mathbf{p}_i \in {\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < ||\mathbf{x}||_2^2}$ $C = C \cup \{\mathbf{p}_i\}$ $\mathbf{y} = \mathsf{MNP}(\mathsf{aff}(C))$ while $\mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))$ $\mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2$ $z \in \operatorname{conv}(C) \cap \overline{xy}$ $C = C - \{\mathbf{p}_i\}$ where \mathbf{p}_i , \mathbf{z} are on different faces of conv(C) $\mathbf{x} = \mathbf{z}$ $\mathbf{y} = MNP(aff(C))$ $\mathbf{x} = \mathbf{y}$

$$\mathbf{p}_1 = (0, 2)$$

 $\mathbf{p}_2 = (3, 0)$
 $\mathbf{p}_3 = (-2, 1)$

return x

 $\mathbf{x} = \mathbf{p}_i$ for some $i = 1, 2, ..., m, \lambda = \mathbf{e}_i$ $C = \{i\}$ while $\mathbf{x} \neq \mathbf{0}$ and there exists \mathbf{p}_i with $\mathbf{x}^T \mathbf{p}_i < \|\mathbf{x}\|_2^2$ $C = C \cup \{j\}$ $\alpha = \operatorname{argmin} \|\sum \alpha_i \mathbf{p}_i\|_2, \ \mathbf{y} = \sum \alpha_i \mathbf{p}_i$ $\sum_{i=1}^{\infty} \alpha_i = 1$ $i \in C$ while $\alpha_i \leq 0$ for some i = 1, 2, ..., m $\theta = \min_{i:\alpha_i \leq 0} \frac{\lambda_i}{\lambda_i - \alpha_i}$ $\mathbf{z} = \theta \mathbf{y} + (1 - \theta) \mathbf{x}$ $i \in \{j : \theta \alpha_i + (1 - \theta)\lambda_i = 0\}$ $C = C - \{i\}$ $\mathbf{x} = \mathbf{z}$ solve $\mathbf{x} = P\lambda$ for λ $\alpha = \underset{\sum_{i \in C} \alpha_i = 1}{\operatorname{argmin}} \| \underset{i \in C}{\sum} \alpha_i \mathbf{p}_i \|_2, \ \mathbf{y} = \underset{i \in C}{\sum} \alpha_i \mathbf{p}_i$ $\mathbf{x} = \mathbf{v}$

return x

$$\mathbf{x} = \mathbf{p}_i$$
 for some $i = 1, 2, ..., m$, $\lambda = \mathbf{e}_i$
 $C = \{i\}$

while $\mathbf{x} \neq \mathbf{0}$ and there exists \mathbf{p}_j with $\mathbf{x}^T \mathbf{p}_j < \|\mathbf{x}\|_2^2$

$$C = C \cup \{j\}$$

$$\alpha = \underset{i \in C}{\operatorname{argmin}} \| \sum_{i \in C} \alpha_i \mathbf{p}_i \|_2, \ \mathbf{y} = \sum_{i \in C} \alpha_i \mathbf{p}_i$$

while $\alpha_i \leq 0$ for some i = 1, 2, ..., m

$$\theta = \min_{i:\alpha_i \le 0} \frac{\lambda_i}{\lambda_i - \alpha_i}$$

$$\mathbf{z} = \theta \mathbf{y} + (1 - \theta) \mathbf{x}$$

$$i \in \{j : \theta \alpha_j + (1 - \theta) \lambda_j = 0\}$$

$$C = C - \{i\}$$

$$\mathbf{x} = \mathbf{z}$$

solve $\mathbf{x} = P\lambda$ for λ

$$\alpha = \underset{\sum_{i \in C} \alpha_i = 1}{\operatorname{solve}} \lim_{i \in C} \alpha_i \mathbf{p}_i \|_2, \ \mathbf{y} = \underset{i \in C}{\sum} \alpha_i \mathbf{p}_i$$

$$= \mathbf{y}$$

Choice 1: Initial vertex.

return x

х

$$\mathbf{x} = \mathbf{p}_i$$
 for some $i = 1, 2, ..., m$, $\lambda = \mathbf{e}_i$
 $C = \{i\}$

while $\mathbf{x} \neq \mathbf{0}$ and there exists \mathbf{p}_i with $\mathbf{x}^T \mathbf{p}_i < \|\mathbf{x}\|_2^2$

$$C = C \cup \{j\}$$

$$\alpha = \underset{\substack{\sum \alpha_i = 1 \\ i \in C}}{\operatorname{argmin}} \| \underset{i \in C}{\sum} \alpha_i \mathbf{p}_i \|_2, \ \mathbf{y} = \underset{i \in C}{\sum} \alpha_i \mathbf{p}_i$$

while $\alpha_i \leq 0$ for some i = 1, 2, ..., m

$$\theta = \min_{i:\alpha_i \leq 0} \frac{\lambda_i}{\lambda_i - \alpha_i}$$

$$\mathbf{z} = \theta \mathbf{y} + (1 - \theta) \mathbf{x}$$

$$i \in \{j : \theta \alpha_j + (1 - \theta) \lambda_j = 0\}$$

$$C = C - \{i\}$$

$$\mathbf{x} = \mathbf{z}$$
solve $\mathbf{x} = P\lambda$ for λ

$$\alpha = \underset{i \in C}{\operatorname{argmin}} \|\sum_{i \in C} \alpha_i \mathbf{p}_i\|_2, \ \mathbf{y} = \underset{i \in C}{\sum} \alpha_i \mathbf{p}_i$$

$$\mathbf{x} = \mathbf{y}$$

Choice 1: Initial vertex.

Choice 2: Adding to corral.

return x

$$\mathbf{x} = \mathbf{p}_i$$
 for some $i = 1, 2, ..., m$, $\lambda = \mathbf{e}_i$
 $C = \{i\}$

while $\mathbf{x} \neq \mathbf{0}$ and there exists \mathbf{p}_i with $\mathbf{x}^T \mathbf{p}_i < \|\mathbf{x}\|_2^2$

$$C = C \cup \{j\}$$

$$\alpha = \underset{\substack{\sum \alpha_i = 1 \\ i \in C}}{\operatorname{argmin}} \| \sum_{i \in C} \alpha_i \mathbf{p}_i \|_2, \ \mathbf{y} = \underset{i \in C}{\sum} \alpha_i \mathbf{p}_i$$

while $\alpha_i \leq 0$ for some i = 1, 2, ..., m

$$\theta = \min_{i:\alpha_i \le 0} \frac{\lambda_i}{\lambda_i - \alpha_i}$$

$$\mathbf{z} = \theta \mathbf{y} + (1 - \theta) \mathbf{x}$$

$$i \in \{j : \theta \alpha_j + (1 - \theta) \lambda_j = 0\}$$

$$C = C - \{i\}$$

$$\mathbf{x} = \mathbf{z}$$

solve $\mathbf{x} = P\lambda$ for λ

$$\alpha = \underset{\sum_{i \in C} \alpha_i = 1}{\operatorname{solve}} \lim_{i \in C} \alpha_i \mathbf{p}_i \|_2, \ \mathbf{y} = \underset{i \in C}{\sum} \alpha_i \mathbf{p}_i$$

$$= \mathbf{y}$$

Choice 1: Initial vertex.

Choice 2: Adding to corral.

Choice 3: Removing from corral.

return x

х

• insertion rules have different benefits

- insertion rules have different benefits
- behavior depends on choice of insertion rule

- insertion rules have different benefits
- behavior depends on choice of insertion rule
- examples in which each insertion rule is better

- insertion rules have different benefits
- behavior depends on choice of insertion rule
- examples in which each insertion rule is better
- a dropped vertex may be readded

▷ von Neumann's algorithm for linear programming
- $\triangleright\,$ von Neumann's algorithm for linear programming
- ▷ Frank-Wolfe method for convex programming (and variants)

- ▷ von Neumann's algorithm for linear programming
- ▷ Frank-Wolfe method for convex programming (and variants)
- ▷ Gilbert's procedure for quadratic programming

- $\triangleright\,$ von Neumann's algorithm for linear programming
- ▷ Frank-Wolfe method for convex programming (and variants)
- ▷ Gilbert's procedure for quadratic programming
 - projection onto simple <u>convex</u> hull

- ▷ von Neumann's algorithm for linear programming
- ▷ Frank-Wolfe method for convex programming (and variants)
- ▷ Gilbert's procedure for quadratic programming
 - projection onto simple <u>convex</u> hull

▷ Hanson-Lawson procedure for non-negative least-squares

• ϵ -approximate solution in $\mathcal{O}(nM^2/\epsilon)$ iterations with linopt insertion rule (Chakrabarty, Jain, Kothari '14)

- ϵ -approximate solution in $\mathcal{O}(nM^2/\epsilon)$ iterations with linopt insertion rule (Chakrabarty, Jain, Kothari '14)
- ϵ -approximate solution in $\mathcal{O}(\rho \log(1/\epsilon))$ iterations with linopt insertion rule (Lacoste-Julien, Jaggi '15)

- ϵ -approximate solution in $\mathcal{O}(nM^2/\epsilon)$ iterations with linopt insertion rule (Chakrabarty, Jain, Kothari '14)
- ϵ -approximate solution in $\mathcal{O}(\rho \log(1/\epsilon))$ iterations with linopt insertion rule (Lacoste-Julien, Jaggi '15)
 - > pseudo-polynomial complexity

Exponential Behavior

- dimension and number of points grow linearly

- dimension and number of points grow linearly

- number of corrals visited grows exponentially

- dimension and number of points grow linearly
- number of corrals visited grows exponentially

Recursively Defined Instances

Recursively Defined Instances

dim: d - 2Instance: P(d - 2)Points: 2d - 5

Recursively Defined Instances

dim: d-2Instance: P(d-2)Points: 2d-5

+4 points

Recursively Defined Instances

dim: d-2Instance: P(d-2)Points: 2d-5

+4 points

dim: dInstance: P(d)Points: 2d - 1

Recursively Defined Instances

dim: d - 2Instance: P(d - 2)Points: 2d - 5 $\xrightarrow{+2 \text{ dim}}$

+4 points

dim: dInstance: P(d)Points: 2d - 1

 $P(1) := \{1\}$

Recursively Defined Instances

dim: d - 2Instance: P(d - 2)Points: 2d - 5 $\xrightarrow{+2 \text{ dim}}$

+4 points

dim: dInstance: P(d)Points: 2d - 1

 $\begin{array}{l} P(1) := \{1\} \\ P(3) := \{(1, 0, 0), \mathbf{p}_3, \mathbf{q}_3, \mathbf{r}_3, \mathbf{s}_3\} \end{array}$

Exponential Example: dim 3

Exponential Example: dim 3

Exponential Example: dim 3

Exponential Example

$$P(d) = \begin{pmatrix} P(d-2) & 0 & 0 \\ \frac{1}{2}\mathbf{o}_{d-2}^{*} & \frac{m_{d-2}}{4} & M_{d-2} \\ \frac{1}{2}\mathbf{o}_{d-2}^{*} & \frac{m_{d-2}}{4} & -(M_{d-2}+1) \\ 0 & \frac{m_{d-2}}{4} & M_{d-2}+2 \\ 0 & \frac{m_{d-2}}{4} & -(M_{d-2}+3) \end{pmatrix}$$

$$\begin{split} \mathbf{o}_{d-2}^{*} &: \mathsf{MNP}(P(d-2)) \\ m_{d-2} &= \|\mathbf{o}_{d-2}^{*}\|_{\infty} \\ M_{d-2} &= \mathsf{max}_{\mathbf{p} \in P(d-2)} \, \|\mathbf{p}\|_{1} \end{split}$$

Exponential Example

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d = 2k - 1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d = 2k - 1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d = 2k - 1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d = 2k - 1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d = 2k - 1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d = 2k - 1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

1

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d = 2k - 1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d = 2k - 1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d = 2k - 1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Lemma

Let $P \subseteq \mathbb{R}^d$ be a finite set of points that is a corral. Let \mathbf{x} be the minimum norm point in aff P. Let $\mathbf{q} \in \text{span}\left(\mathbf{x}, \text{span}\left(P\right)^{\perp}\right)$, and assume $\mathbf{q}^T \mathbf{x} < \min\{\|\mathbf{q}\|_2^2, \|\mathbf{x}\|_2^2\}$. Then $P \cup \{\mathbf{q}\}$ is a corral. Moreover, the minimum norm point \mathbf{y} in $\text{conv}(P \cup \{\mathbf{q}\})$ is a (strict) convex combination of \mathbf{q} and the minimum norm point of P: $\mathbf{y} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{q}$ with $\lambda = \mathbf{q}^T(\mathbf{q} - \mathbf{x})/\|\mathbf{q} - \mathbf{x}\|_2^2$.

Lemma

Let $P \subseteq \mathbb{R}^d$ be a finite set of points that is a corral. Let \mathbf{x} be the minimum norm point in aff P. Let $\mathbf{q} \in \text{span}\left(\mathbf{x}, \text{span}\left(P\right)^{\perp}\right)$, and assume $\mathbf{q}^T \mathbf{x} < \min\{\|\mathbf{q}\|_2^2, \|\mathbf{x}\|_2^2\}$. Then $P \cup \{\mathbf{q}\}$ is a corral. Moreover, the minimum norm point \mathbf{y} in $\text{conv}(P \cup \{\mathbf{q}\})$ is a (strict) convex combination of \mathbf{q} and the minimum norm point of P: $\mathbf{y} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{q}$ with $\lambda = \mathbf{q}^T(\mathbf{q} - \mathbf{x})/\|\mathbf{q} - \mathbf{x}\|_2^2$.

a corral with a point made from MNP and orthogonal directions is still a corral
Adding Point to Corral

Lemma

Let $A \subseteq \mathbb{R}^d$ be a proper linear subspace. Let $P \subseteq A$ be a non-empty finite set. Let $Q \subseteq A^{\perp}$ be another non-empty finite set. Let **x** be the minimum norm point in aff P. Let **y** be the minimum norm point in aff Q. Let **z** be the minimum norm point in aff $(P \cup Q)$. We have:

1. **z** is the minimum norm point in $[\mathbf{x}, \mathbf{y}]$ and therefore $\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$ with $\lambda = \frac{\|\mathbf{y}\|_2^2}{\|\mathbf{x}\|_2^2 + \|\mathbf{y}\|_2^2}$.

2. If $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{y} \neq \mathbf{0}$, then \mathbf{z} is a strict convex combination of \mathbf{x} and \mathbf{y} .

3. If $\mathbf{x} \neq \mathbf{0}$, $\mathbf{y} \neq \mathbf{0}$ and P and Q are corrals, then $P \cup Q$ is also a corral.

Lemma

Let $A \subseteq \mathbb{R}^d$ be a proper linear subspace. Let $P \subseteq A$ be a non-empty finite set. Let $Q \subseteq A^{\perp}$ be another non-empty finite set. Let \mathbf{x} be the minimum norm point in aff P. Let \mathbf{y} be the minimum norm point in aff Q. Let \mathbf{z} be the minimum norm point in aff $(P \cup Q)$. We have:

1. **z** is the minimum norm point in $[\mathbf{x}, \mathbf{y}]$ and therefore $\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$ with $\lambda = \frac{\|\mathbf{y}\|_2^2}{\|\mathbf{x}\|_2^2 + \|\mathbf{y}\|_2^2}$.

2. If $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{y} \neq \mathbf{0}$, then \mathbf{z} is a strict convex combination of \mathbf{x} and \mathbf{y} .

3. If $\mathbf{x} \neq \mathbf{0}$, $\mathbf{y} \neq \mathbf{0}$ and P and Q are corrals, then $P \cup Q$ is also a corral.

the union of orthogonal corrals is still a corral

Orthogonal Corrals

the union of orthogonal corrals is still a corral

Lemma

For a point \mathbf{z} define $H_{\mathbf{z}} = {\mathbf{w} \in \mathbb{R}^n : \mathbf{w} \cdot \mathbf{z} < ||\mathbf{z}||_2^2}$. Suppose that we have an instance of the minimum norm point problem in \mathbb{R}^d as follows: Some points, P, live in a proper linear subspace A and some, Q, in A^{\perp} . Let \mathbf{x} be the minimum norm point in aff P and \mathbf{y} be the minimum norm point in aff $(P \cup Q)$. Then $H_{\mathbf{y}} \cap A = H_{\mathbf{x}} \cap A$.

Lemma

For a point \mathbf{z} define $H_{\mathbf{z}} = {\mathbf{w} \in \mathbb{R}^n : \mathbf{w} \cdot \mathbf{z} < ||\mathbf{z}||_2^2}$. Suppose that we have an instance of the minimum norm point problem in \mathbb{R}^d as follows: Some points, P, live in a proper linear subspace A and some, Q, in A^{\perp} . Let \mathbf{x} be the minimum norm point in aff P and \mathbf{y} be the minimum norm point in aff $(P \cup Q)$. Then $H_{\mathbf{y}} \cap A = H_{\mathbf{x}} \cap A$.

adding orthogonal points to the corral doesn't create any available points

Wolfe's Criterion under Addition of Orthogonal Point

Sketch of Proof of Sequence C(d): C(d-2)

$$P(d) = \begin{pmatrix} P(d-2) & 0 & 0\\ \frac{1}{2}\mathbf{o}_{d-2}^{*} & \frac{m_{d-2}}{4} & M_{d-2}\\ \frac{1}{2}\mathbf{o}_{d-2}^{*} & \frac{m_{d-2}}{4} & -(M_{d-2}+1)\\ 0 & \frac{m_{d-2}}{4} & M_{d-2}+2\\ 0 & \frac{m_{d-2}}{4} & -(M_{d-2}+3) \end{pmatrix}$$

$$\begin{split} \mathbf{o}_{d-2}^* &: \ \mathsf{MNP}(P(d-2)) \\ m_{d-2} &= \|\mathbf{o}_{d-2}^*\|_{\infty} \\ M_{d-2} &= \max_{\mathbf{p} \in P(d-2)} \|\mathbf{p}\|_1 \end{split}$$

Sketch of Proof of Sequence C(d): C(d-2)

$$P(d) = \begin{pmatrix} P(d-2) & 0 & 0 \\ \frac{1}{2}\mathbf{o}_{d-2}^{*} & \frac{m_{d-2}}{4} & M_{d-2} \\ \frac{1}{2}\mathbf{o}_{d-2}^{*} & \frac{m_{d-2}}{4} & -(M_{d-2}+1) \\ 0 & \frac{m_{d-2}}{4} & M_{d-2}+2 \\ 0 & \frac{m_{d-2}}{4} & -(M_{d-2}+3) \end{pmatrix} \qquad \bigvee \begin{array}{c} \mathbf{o}_{d-2}^{*} : \operatorname{MNP}(P(d-2)) \\ \|\cdot\| & m_{d-2} = \|\mathbf{o}_{d-2}^{*}\|_{\infty} \\ M_{d-2} = \max_{\mathbf{p} \in P(d-2)} \|\mathbf{p}\|_{1} \\ \end{array}$$

Sketch of Proof of Sequence C(d): $O(d-2)\mathbf{p}_d$

Sketch of Proof of Sequence C(d): $O(d-2)\mathbf{p}_d$

a corral with a point made from MNP and orthogonal directions is still a corral

Sketch of Proof of Sequence C(d): $p_d q_d$

Sketch of Proof of Sequence C(d): p_dq_d

Sketch of Proof of Sequence C(d): $q_d r_d$

Sketch of Proof of Sequence C(d): $q_d r_d$

Sketch of Proof of Sequence $\overline{C(d)}$: r_ds_d

Sketch of Proof of Sequence C(d): r_ds_d

Sketch of Proof of Sequence C(d): $C(d-2)r_ds_d$

- the union of orthogonal corrals is still a corral
- adding orthogonal points to the corral doesn't create any available points

Conclusions

1. Find an exponential example for Wolfe's method with linopt insertion rule.

- 1. Find an exponential example for Wolfe's method with linopt insertion rule.
- Search for types of polytopes where Wolfe's method is polynomial (e.g. base polytopes).

- 1. Find an exponential example for Wolfe's method with linopt insertion rule.
- Search for types of polytopes where Wolfe's method is polynomial (e.g. base polytopes).
- 3. Give an average (or smoothed) analysis of Wolfe's method.

UCDAVIS MATHEMATICS

Thanks for attending!

Questions?

[1] I. Bárány and S. Onn.

Colourful linear programming and its relatives. Mathematics of Operations Research, 22(3):550–567, 1997.

- [2] D. Chakrabarty, P. Jain, and P. Kothari.
 Provable submodular minimization using wolfe's algorithm. CoRR, abs/1411.0095, 2014.
- [3] J. A. De Loera, J. Haddock, and L. Rademacher.
 The minimum Euclidean-norm point on a convex polytope: Wolfes combinatorial algorithm is exponential.
 2017.
- [4] S. Fujishige, T. Hayashi, and S. Isotani.

The minimum-norm-point algorithm applied to submodular function minimization and linear programming.

Citeseer, 2006.

Example: minnorm < linopt

$${\mathcal P}={\sf conv}\{(0.8,0.9,0),(1.5,-0.5,0),(-1,-1,2),(-4,1.5,2)\}\subset {\mathbb R}^3$$

Major Cycle	Minor Cycle	С
0	0	$\{p_1\}$
1	0	$\{{\bf p_1},{\bf p_2}\}$
2	0	$\{{\sf p}_1,{\sf p}_2,{\sf p}_3\}$
3	0	$\{{\tt p}_1,{\tt p}_2,{\tt p}_3,{\tt p}_4\}$
3	1	$\{{\tt p_1},{\tt p_2},{\tt p_4}\}$

Major Cycle	Minor Cycle	С
0	0	$\{p_1\}$
1	0	$\{p_1, p_4\}$
2	0	$\{{\sf p}_1,{\sf p}_4,{\sf p}_3\}$
2	1	$\{{\sf p}_1,{\sf p}_3\}$
3	0	$\{{\tt p_1},{\tt p_3},{\tt p_2}\}$
4	0	$\{{\sf p}_1,{\sf p}_2,{\sf p}_3,{\sf p}_4\}$
4	1	$\{{\bf p_1}, {\bf p_2}, {\bf p_4}\}$

Major Cycle	Minor Cycle	С		
0	0	{p ₁ }		
1	0	$\{{\tt p_1},{\tt p_2}\}$		
2	0	$\{{\tt p}_1,{\tt p}_2,{\tt p}_3\}$		
3	0	$\{{\tt p}_1,{\tt p}_2,{\tt p}_3,{\tt p}_4\}$		
3	1	$\{{\tt p}_1,{\tt p}_2,{\tt p}_4\}$		
minnorm < linopt				

Major Cycle	Minor Cycle	С
0	0	$\{p_1\}$
1	0	$\{p_1, p_4\}$
2	0	$\{{\sf p}_1,{\sf p}_4,{\sf p}_3\}$
2	1	$\{{\bf p_1},{\bf p_3}\}$
3	0	$\{{\sf p}_1,{\sf p}_3,{\sf p}_2\}$
4	0	$\{{\sf p}_1,{\sf p}_2,{\sf p}_3,{\sf p}_4\}$
4	1	$\{{\sf p}_1,{\sf p}_2,{\sf p}_4\}$