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Linear Feasibility Problem

We are interested in solving the linear feasibility problem (LF):

Find x such that Ax ≤ b or conclude one does not exist.

We consider large-scale problems in which A ∈ Rm×n, m >> n.

These problems arise in machine learning classification,
support-vector machines (Boser, Guyon, Vapnik 1992), (Cortes,
Vapnik 1995).
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Projection Methods

If P := {x ∈ Rn : Ax ≤ b} is nonempty, these methods
construct an approximation to an element of P :

1. Motzkin’s Relaxation Method(s)

2. Randomized Kaczmarz Method

3. Sampling Kaczmarz-Motzkin Method (SKM)
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Motzkin’s Relaxation Method(s)

Given x0 ∈ Rn, fix 0 < λ ≤ 2 and iteratively construct
approximations to P :

1. If xk is feasible, stop.

2. Choose ik ∈ [m] as ik := argmax
i∈[m]

aTi xk−1 − bi.

3. Define xk := xk−1 − λ
aTik

xk−1−bik
||aik ||

2 aik .

4. Repeat.

λ is the projection (or relaxation) parameter
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Randomized Kaczmarz Method

Given x0 ∈ Rn, iteratively construct approximations to P :

1. If xk is feasible, stop.

2. Choose ik ∈ [m] with probability
||aik ||

2

||A||2F
.

3. Define xk := xk−1 −
(aTik

xk−1−bik )
+

||aik ||
2 aik .

4. Repeat.
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A Hybrid Method (SKM)

Given x0 ∈ Rn, fix 0 < λ ≤ 2 and iteratively construct
approximations to P in the following way:

1. If xk is feasible, stop.

2. Choose τk ⊂ [m] to be a sample of size β constraints chosen
uniformly at random from among the rows of A.

3. From among these β rows, choose
ik := argmax

i∈τk
aTi xk−1 − bi.

4. Define xk := xk−1 − λ
(aTik

xk−1−bik )
+

||aik ||
2 aik .

5. Repeat.
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SKM Method Convergence Rate

Theorem (De Loera, H., Needell)

If the feasible region (for row-normalized A) is nonempty, then
the SKM methods with samples of size β converge at least
linearly in expectation: If sk−1 is the number of constraints
satisfied by xk−1 and Vk−1 = max{m− sk−1,m− β + 1} then

E[d(xk, P )2] ≤
(

1− 2λ− λ2

Vk−1L
2
2

)
d(xk−1, P )2

≤
(

1− 2λ− λ2

mL2
2

)k
d(x0, P )2.



Linear Feasibility Hybrid Method Convergence Rate Expected Finiteness Experimental Results

SKM Method Convergence Rate
Theorem (De Loera, H., Needell)

If the feasible region (for row-normalized A) is nonempty, then
the SKM methods with samples of size β converge at least
linearly in expectation: If sk−1 is the number of constraints
satisfied by xk−1 and Vk−1 = max{m− sk−1,m− β + 1} then

E[d(xk, P )2] ≤
(

1− 2λ− λ2

Vk−1L
2
2

)
d(xk−1, P )2

≤
(

1− 2λ− λ2

mL2
2

)k
d(x0, P )2.

The Hoffman constant, L2 is an error bound defined as the
minimum constant that satisfies

d(x, P ) ≤ L2||(Ax− b)+||2.
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Improved Rate

Theorem (De Loera, H., Needell)

If the feasible region, P = {x|Ax ≤ b} is nondegenerate
(generic) and nonempty (for normalized A), then an SKM
method with samples of size β ≤ m− n is guaranteed an
increased convergence rate after some K:

E[d(xk, P )2] ≤
(

1−2λ− λ2

mL2
2

)K(
1− 2λ− λ2

(m− β + 1)L2
2

)k−K
d(x0, P )2.
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Finiteness of Motzkin’s Method

Theorem (Goffin 1980, Telgen 1982)

Suppose A, b are rational matrices with binary encoding length
σ, and that we run a relaxation method on the normalized
system Ãx ≤ b̃ with x0 = 0. Then either the relaxation method

detects feasibility of the system within k =
⌈

24σ

nλ(2−λ)

⌉
iterations

or the system is infeasible.

The binary encoding length of the problem is

σ =
m∑
i=1

n∑
j=1

log(|aij |+ 1) +
m∑
i=1

log(|bi|+ 1) + log(nm) + 2.
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Certificates of Feasibility

Define the maximum violation in the point x to be

θ(x) := max{0,max
i∈[m]

aTi x− bi}.

Lemma

If the rational system Ax ≤ b (with binary encoding length σ) is
infeasible, then for all x ∈ Rn, the maximum violation satisfies
θ(x) ≥ 21−σ.

Thus, to detect feasibility of the rational system Ax ≤ b, we
need only find a point, xk with θ(xk) < 2 ∗ 2−σ; such a point
will be called a certificate of feasibility.
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Expected Finiteness of SKM methods
Theorem (De Loera, H., Needell)

Suppose A, b are rational matrices with binary encoding length
σ, and that we run an SKM method on the normalized system
Ãx ≤ b̃ with x0 = 0. Suppose the number of iterations k satisfies

k >

4σ − 4− log n+ 2 log

(
max
j∈[m]
||aj ||

)
log

(
mL2

2

mL2
2−2λ+λ2

) .

If the system Ax ≤ b is feasible, the probability that the iterate
xk is not a certificate of feasibility is at most

max ||aj || 22σ−2

n1/2

(
1− 2λ− λ2

mL2
2

)k/2
,

which decreases with k.
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Iterations vs. Time

SKM on Gaussian random system, A ∈ R50000×100
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Heuristics for β Selection

In an iteration, the expected improvement is

d(xj , P )2 − d(xj+1, P )2 = E
[
||(Aτjxj − bτj )+||2∞

]
.

The worst case will be when the m− s non-zero entries of the
residual all are the same, assume they are 1.

We consider this case and model the computation in a fixed
iteration as the overhead cost, C, and a factor cnβ for checking
the feasibility of β constraints.
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Heuristics for β Selection

Note that

E
[
||(Aτjxj − bτj )+||2∞

]
=

1− (sβ)
(mβ )
≈ 1−

(
s
m

)β
if β ≤ s

1 if β > s

Thus, we look for β that maximizes the improvement per unit
of computation time:

gain(β) :=
E
[
||(Aτjxj − bτj )+||2∞

]
C + cnβ

≈
1−

(
s
m

)β
C + cnβ

.
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Figure : The quantity gain(β) as a function of β for various
numbers of satisfied constraints s. Here we set m = 200, n = 10, c = 1
and C = 100. Optimal values of β maximize the gain function.
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