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Problem

Solve large-scale, highly overdetermined, corrupted system of equations

for solution to uncorrupted subsystem.

Problem: Ax = b + e,A ∈ Rm×n,m >> n

(Corrupted) Error (e): sparse, arbitrarily large entries

Solution (x∗): x∗ ∈ {x : Ax = b}

Applications: logic programming, error correction in telecommunications

Problem: Ax = b + e,A ∈ Rm×n,m >> n

(Noisy) Error (e): small, evenly distributed entries

Solution (xLS): xLS ∈ argmin‖Ax − b − e‖2

1



Problem

Solve large-scale, highly overdetermined, corrupted system of equations

for solution to uncorrupted subsystem.

Problem: Ax = b + e,A ∈ Rm×n,m >> n

(Corrupted) Error (e): sparse, arbitrarily large entries

Solution (x∗): x∗ ∈ {x : Ax = b}

Applications: logic programming, error correction in telecommunications

Problem: Ax = b + e,A ∈ Rm×n,m >> n

(Noisy) Error (e): small, evenly distributed entries

Solution (xLS): xLS ∈ argmin‖Ax − b − e‖2

1



Problem

Solve large-scale, highly overdetermined, corrupted system of equations

for solution to uncorrupted subsystem.

Problem: Ax = b + e,A ∈ Rm×n,m >> n

(Corrupted) Error (e): sparse, arbitrarily large entries

Solution (x∗): x∗ ∈ {x : Ax = b}

Applications: logic programming, error correction in telecommunications

Problem: Ax = b + e,A ∈ Rm×n,m >> n

(Noisy) Error (e): small, evenly distributed entries

Solution (xLS): xLS ∈ argmin‖Ax − b − e‖2

1



Problem

Solve large-scale, highly overdetermined, corrupted system of equations

for solution to uncorrupted subsystem.

Problem: Ax = b + e,A ∈ Rm×n,m >> n

(Corrupted) Error (e): sparse, arbitrarily large entries

Solution (x∗): x∗ ∈ {x : Ax = b}

Applications: logic programming, error correction in telecommunications

Problem: Ax = b + e,A ∈ Rm×n,m >> n

(Noisy) Error (e): small, evenly distributed entries

Solution (xLS): xLS ∈ argmin‖Ax − b − e‖2

1



Why not least-squares?

x∗

xLS
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Randomized Kaczmarz

RK

1. Start with initial guess x0

2. xk+1 = xk +
bik−a

T
ik
xk

‖aik ‖2
aik where ik ∈ [m] is chosen randomly

3. Repeat (2)

x
x0
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Randomized Kaczmarz

RK

1. Start with initial guess x0

2. xk+1 = xk +
bik−a

T
ik
xk

‖aik ‖2
aik where ik ∈ [m] is chosen randomly

3. Repeat (2)

Theorem (Strohmer-Vershynin, 2008)

If Ax = b is consistent and RK is used with P[ik = j ] = ‖aj‖2/‖A‖2F then

iterates converge linearly in expectation with

E‖xk − x‖2 ≤
(

1− 1

‖A‖2F‖A−1‖2

)k

‖x0 − x‖2.
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Proposed Method

Goal: Use RK to detect the corrupted equations with high probability.

We call ε∗/2 the detection horizon.
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Proposed Method

Goal: Use RK to detect the corrupted equations with high probability.

Lemma (H.-Needell)

Let ε∗ = mini∈[m] |Ax∗ − b|i = |ei | and suppose |supp(e)| = s. If

||ai || = 1 for i ∈ [m] and ||x − x∗|| < 1
2ε
∗ we have that the d ≤ s indices

of largest magnitude residual entries are contained in supp(e). That is,

we have D ⊂ supp(e), where

D = argmax
D⊂[A],|D|=d

∑
i∈D

|Ax − b|i .

We call ε∗/2 the detection horizon.
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Proposed Method

Method 1 Windowed Kaczmarz

1: procedure WK(A, b, k ,W , d)

2: S = ∅
3: for i = 1, 2, ...W do

4: x ik = kth iterate produced by RK with x0 = 0, A, b.

5: D = d indices of the largest entries of the residual, |Ax ik − b|.
6: S = S ∪ D

7: return x , where ASC x = bSC
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Example

WK(A,b,k = 2,W = 3,d = 1): j = 1, i = 1, S = ∅

x∗

x10

H1

H2

H3

H4

H5

H6 H7
7



Example

WK(A,b,k = 2,W = 3,d = 1): j = 1, i = 1, S = ∅

x∗

x10

x11

H1

H2

H3

H4

H5

H6 H7
7



Example

WK(A,b,k = 2,W = 3,d = 1): j = 2, i = 1, S = {7}

x∗

x10

x11

x12

H1

H2

H3

H4

H5

H6 H7
7



Example

WK(A,b,k = 2,W = 3,d = 1): j = 1, i = 2, S = {7}
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Example

WK(A,b,k = 2,W = 3,d = 1): j = 2, i = 2, S = {7, 5}
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Example

WK(A,b,k = 2,W = 3,d = 1): j = 1, i = 3, S = {7, 5}
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Example

WK(A,b,k = 2,W = 3,d = 1): j = 2, i = 3, S = {7, 5, 6}
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Example

Solve ASC x = bSC .
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Theoretical Guarantees

Lemma (H.-Needell)

Let ε∗ = mini∈[m] |Ax∗ − b|i = |ei | and suppose |supp(e)| = s. Assume

that ||ai || = 1 for all i ∈ [m] and let 0 < δ < 1. Define

k∗ =

⌈
log
(
δ(ε∗)2

4||x∗||2

)
log
(

1−
σ2
min(Asupp(e)C

)

m−s

)⌉.
Then in window i of the Windowed Kaczmarz method, the iterate

produced by the RK iterations, x ik∗ satisfies

P
[
||x ik∗ − x∗|| ≤ 1

2
ε∗
]
≥ p := (1− δ)

(m − s

m

)k∗
.
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Theoretical Guarantee Values (Gaussian A ∈ R50000×100)

k∗ =

⌈
log

(
δ(ε∗)2

4||x∗||2

)
log

(
1−

σ2
min

(A
supp(e)C

)

m−s

)⌉
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Theoretical Guarantee Values (Correlated A ∈ R50000×100)

k∗ =

⌈
log

(
δ(ε∗)2

4||x∗||2

)
log

(
1−

σ2
min

(A
supp(e)C

)

m−s

)⌉
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Theoretical Guarantee Values (Gaussian A ∈ R50000×100)

P
[
||x ik∗ − x∗|| ≤ 1

2ε
∗
]
≥ p := (1− δ)

(
m−s
m

)k∗
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Theoretical Guarantee Values (Correlated A ∈ R50000×100)

P
[
||x ik∗ − x∗|| ≤ 1

2ε
∗
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≥ p := (1− δ)

(
m−s
m
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Theoretical Guarantees

Theorem (H.-Needell)

Assume that ||ai || = 1 for all i ∈ [m] and let 0 < δ < 1. Suppose

d ≥ s = |supp(e)|, W ≤ bm−nd c and k∗ is as given in lemma 2. Then the

Windowed Kaczmarz method on A, b will detect the corrupted equations

(supp(e) ⊂ S) and the remaining equations given by A[m]−S , b[m]−S will

have solution x∗ with probability at least

pW := 1−
[

1− (1− δ)
(m − s

m

)k∗]W
.
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Theoretical Guarantee Values (Gaussian A ∈ R50000×100)
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Experimental Values (Gaussian A ∈ R50000×100)
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Experimental Values (Gaussian A ∈ R50000×100)
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Experimental Values (Gaussian A ∈ R50000×100)
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Experimental Values (Gaussian A ∈ R50000×100)
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Theoretical Guarantee Values (Correlated A ∈ R50000×100)

pW := 1−
[

1− (1− δ)
(

m−s
m

)k∗]W
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Experimental Values (Correlated A ∈ R50000×100)
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Experimental Values (Correlated A ∈ R50000×100)

21



Conclusions and Future Work

• randomized projection methods are able to detect corruption

• often experimental results far outperform theoretical guarantees

• performance on real data

• reduce dependence on artificial parameters
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The End

Thanks! Questions?
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