Randomized Projections for Corrupted Linear Systems

Jamie Haddock ${ }^{1}$, Deanna Needell ${ }^{2}$
${ }^{1}$ Graduate Group in Applied Mathematics, University of California, Davis
${ }^{2}$ Department of Mathematics, University of California, Los Angeles
jhaddock@math.ucdavis.edu
January 28, 2018

Problem

Solve large-scale, highly overdetermined, corrupted system of equations for solution to uncorrupted subsystem.

Problem

Solve large-scale, highly overdetermined, corrupted system of equations for solution to uncorrupted subsystem.

Problem:
(Corrupted) Error (e):
Solution (x^{*}):

$$
A x=b+e, A \in \mathbb{R}^{m \times n}, m \gg n
$$

sparse, arbitrarily large entries

$$
x^{*} \in\{x: A x=b\}
$$

Problem

Solve large-scale, highly overdetermined, corrupted system of equations for solution to uncorrupted subsystem.

Problem:
(Corrupted) Error (e):
Solution (x^{*}):

$$
A x=b+e, A \in \mathbb{R}^{m \times n}, m \gg n
$$

sparse, arbitrarily large entries

$$
x^{*} \in\{x: A x=b\}
$$

Applications: logic programming, error correction in telecommunications

Problem

Solve large-scale, highly overdetermined, corrupted system of equations for solution to uncorrupted subsystem.

Problem:
Error (e):
Solution (x^{*}):

$$
A x=b+e, A \in \mathbb{R}^{m \times n}, m \gg n
$$

sparse, arbitrarily large entries

$$
x^{*} \in\{x: A x=b\}
$$

Applications: logic programming, error correction in telecommunications

Problem:
Error (e):
Solution ($x_{\text {LS }}$):

$$
A x=b+e, A \in \mathbb{R}^{m \times n}, m \gg n
$$ small, evenly distributed entries

$$
x_{L S} \in \operatorname{argmin}\|A x-b-e\|^{2}
$$

Why not least-squares?

Randomized Kaczmarz

RK

1. Start with initial guess x_{0}
2. $x_{k+1}=x_{k}+\frac{b_{i k}-a_{i_{k}}^{T} x_{k}}{\left\|a_{i}\right\|^{2}} a_{i_{k}}$ where $i_{k} \in[m]$ is chosen randomly
3. Repeat (2)

Randomized Kaczmarz

RK

1. Start with initial guess x_{0}
2. $x_{k+1}=x_{k}+\frac{b_{i k}-a_{i_{1}}^{T} x_{k}}{\left\|a_{i}\right\|^{2}} a_{i_{k}}$ where $i_{k} \in[m]$ is chosen randomly
3. Repeat (2)

Randomized Kaczmarz

RK

1. Start with initial guess x_{0}
2. $x_{k+1}=x_{k}+\frac{b_{i k}-a_{i_{1}}^{T} x_{k}}{\left\|a_{i}\right\|^{2}} a_{i_{k}}$ where $i_{k} \in[m]$ is chosen randomly
3. Repeat (2)

Randomized Kaczmarz

RK

1. Start with initial guess x_{0}
2. $x_{k+1}=x_{k}+\frac{b_{i k}-a_{i_{k}}^{T} x_{k}}{\left\|a_{i}\right\|^{2}} a_{i_{k}}$ where $i_{k} \in[m]$ is chosen randomly
3. Repeat (2)

Randomized Kaczmarz

RK

1. Start with initial guess x_{0}
2. $x_{k+1}=x_{k}+\frac{b_{i_{k}}-a_{i_{k}}^{T} x_{k}}{\left\|a_{k}\right\|^{2}} a_{i_{k}}$ where $i_{k} \in[m]$ is chosen randomly
3. Repeat (2)

Theorem (Strohmer-Vershynin, 2008)
If $A x=b$ is consistent and RK is used with $\mathbb{P}\left[i_{k}=j\right]=\left\|a_{j}\right\|^{2} /\|A\|_{F}^{2}$ then iterates converge linearly in expectation with

$$
\mathbb{E}\left\|x_{k}-x\right\|^{2} \leq\left(1-\frac{1}{\|A\|_{F}^{2}\left\|A^{-1}\right\|^{2}}\right)^{k}\left\|x_{0}-x\right\|^{2} .
$$

Proposed Method

Goal: Use RK to detect the corrupted equations with high probability.

Proposed Method

Goal: Use RK to detect the corrupted equations with high probability. Lemma (H.-Needell)

Let $\epsilon^{*}=\min _{i \in[m]}\left|A x^{*}-b\right|_{i}=\left|e_{i}\right|$ and suppose $|\operatorname{supp}(e)|=s$. If $\left\|a_{i}\right\|=1$ for $i \in[m]$ and $\left\|x-x^{*}\right\|<\frac{1}{2} \epsilon^{*}$ we have that the $d \leq s$ indices of largest magnitude residual entries are contained in supp(e). That is, we have $D \subset \operatorname{supp}(e)$, where

$$
D=\underset{D \subset[A],|D|=d}{\operatorname{argmax}} \sum_{i \in D}|A x-b|_{i} .
$$

Proposed Method

Goal: Use RK to detect the corrupted equations with high probability.

Proposed Method

Goal: Use RK to detect the corrupted equations with high probability.

We call $\epsilon^{*} / 2$ the detection horizon.

Proposed Method

```
Method 1 Windowed Kaczmarz
    1: procedure \(\mathrm{WK}(A, b, k, W, d)\)
    2: \(\quad S=\emptyset\)
    3: \(\quad\) for \(i=1,2, \ldots W\) do
    4: \(\quad x_{k}^{i}=k\) th iterate produced by RK with \(x_{0}=0, A, b\).
    5: \(\quad D=d\) indices of the largest entries of the residual, \(\left|A x_{k}^{i}-b\right|\).
    6: \(\quad S=S \cup D\)
    7: \(\quad\) return \(x\), where \(A_{S c} x=b_{S c}\)
```


Example

$\mathbf{W K}(A, b, k=2, W=3, d=1): j=1, i=1, S=\emptyset$

Example

$\mathbf{W K}(A, b, k=2, W=3, d=1): j=1, i=1, S=\emptyset$

Example

$$
\mathbf{W K}(A, b, k=2, W=3, d=1): j=2, i=1, S=\{7\}
$$

Example

$\mathbf{W K}(A, b, k=2, W=3, d=1): j=1, i=2, S=\{7\}$

Example

Example

Example

Example

Example

Example

Solve $A_{S} c x=b_{S} c$.

Theoretical Guarantees

Lemma (H.-Needell)

Let $\epsilon^{*}=\min _{i \in[m]}\left|A x^{*}-b\right|_{i}=\left|e_{i}\right|$ and suppose $|\operatorname{supp}(e)|=s$. Assume that $\left\|a_{i}\right\|=1$ for all $i \in[m]$ and let $0<\delta<1$. Define

$$
k^{*}=\left\lceil\frac{\log \left(\frac{\delta\left(\epsilon^{*}\right)^{2}}{\left.4\left\|x^{*}\right\|\right|^{2}}\right)}{\log \left(1-\frac{\sigma_{\min }^{2}\left(A_{\text {supp }(e)}\right)}{m-s}\right)}\right\rceil .
$$

Then in window i of the Windowed Kaczmarz method, the iterate produced by the RK iterations, $x_{k^{*}}^{i}$ satisfies

$$
\mathbb{P}\left[\left\|x_{k^{*}}^{i}-x^{*}\right\| \leq \frac{1}{2} \epsilon^{*}\right] \geq p:=(1-\delta)\left(\frac{m-s}{m}\right)^{k^{*}} .
$$

Theoretical Guarantee Values (Gaussian $A \in \mathbb{R}^{50000 \times 100}$)

$$
k^{*}=\left\lceil\frac{\log \left(\frac{\delta\left(\epsilon^{*}\right)^{2}}{4\left\|x^{*}\right\| \|^{2}}\right)}{\log \left(1-\frac{\sigma_{\min }^{2}\left(A_{\operatorname{supp}(e)} C\right)}{m-s}\right)}\right\rceil
$$

Theoretical Guarantee Values (Correlated $A \in \mathbb{R}^{50000 \times 100}$)

$$
k^{*}=\left\lceil\frac{\log \left(\frac{\delta\left(\epsilon^{*}\right)^{2}}{4\left\|x^{*}\right\| \|^{2}}\right)}{\log \left(1-\frac{\sigma_{\min }^{2}\left(A_{\operatorname{supp}(e)} C\right)}{m-s}\right)}\right\rceil
$$

Theoretical Guarantee Values (Gaussian $A \in \mathbb{R}^{50000 \times 100}$)

$$
\mathbb{P}\left[\left\|x_{k^{*}}^{i}-x^{*}\right\| \leq \frac{1}{2} \epsilon^{*}\right] \geq p:=(1-\delta)\left(\frac{m-s}{m}\right)^{k^{*}}
$$

Theoretical Guarantee Values (Correlated $A \in \mathbb{R}^{50000 \times 100}$)

$$
\mathbb{P}\left[\left\|x_{k^{*}}^{i}-x^{*}\right\| \leq \frac{1}{2} \epsilon^{*}\right] \geq p:=(1-\delta)\left(\frac{m-s}{m}\right)^{k^{*}}
$$

Theoretical Guarantees

Theorem (H.-Needell)

Assume that $\left\|a_{i}\right\|=1$ for all $i \in[m]$ and let $0<\delta<1$. Suppose $d \geq s=|\operatorname{supp}(e)|, W \leq\left\lfloor\frac{m-n}{d}\right\rfloor$ and k^{*} is as given in lemma 2. Then the Windowed Kaczmarz method on A, b will detect the corrupted equations $(\operatorname{supp}(e) \subset S)$ and the remaining equations given by $A_{[m]-S}, b_{[m]-S}$ will have solution x^{*} with probability at least

$$
p_{W}:=1-\left[1-(1-\delta)\left(\frac{m-s}{m}\right)^{k^{*}}\right]^{W} .
$$

Theoretical Guarantee Values (Gaussian $A \in \mathbb{R}^{50000 \times 100}$)

$$
p_{W}:=1-\left[1-(1-\delta)\left(\frac{m-s}{m}\right)^{k^{*}}\right]^{W}
$$

Experimental Values (Gaussian $A \in \mathbb{R}^{50000 \times 100}$)

Experimental Values (Gaussian $A \in \mathbb{R}^{50000 \times 100}$)

Experimental Values (Gaussian $A \in \mathbb{R}^{50000 \times 100}$)

Experimental Values (Gaussian $A \in \mathbb{R}^{50000 \times 100}$)

Theoretical Guarantee Values (Correlated $A \in \mathbb{R}^{50000 \times 100}$)

$$
p_{W}:=1-\left[1-(1-\delta)\left(\frac{m-s}{m}\right)^{k^{*}}\right]^{W}
$$

Experimental Values (Correlated $A \in \mathbb{R}^{50000 \times 100}$)

Experimental Values (Correlated $A \in \mathbb{R}^{50000 \times 100}$)

Conclusions and Future Work

- randomized projection methods are able to detect corruption
- often experimental results far outperform theoretical guarantees
- performance on real data
- reduce dependence on artificial parameters

The End

Thanks! Questions?

國
E. Amaldi, P. Belotti, and R. Hauser.

Randomized relaxation methods for the maximum feasible subsystem problem.
In International Conference on Integer Programming and Combinatorial Optimization, pages 249-264. Springer, 2005.
N. Jamil, X. Chen, and A. Cloninger.

Hildreths algorithm with applications to soft constraints for user interface layout.
Journal of Computational and Applied Mathematics, 288:193-202, 2015.
S. Kaczmarz.

Angenäherte auflösung von systemen linearer gleichungen.
Bull.Internat.Acad.Polon.Sci.Lettres A, pages 335-357, 1937.
(ivi Strohmer and R. Vershynin.
A randomized Kaczmarz algorithm with exponential convergence. Journal of Fourier Analysis and Applications, 15(2):262-278, 2009.

