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Solve large-scale, highly overdetermined, corrupted system of equations

for solution to uncorrupted subsystem.

Problem: Ax=b+e, AcR™" m>>n
(Corrupted) Error (e): sparse, arbitrarily large entries
Solution (x*): x* e {x: Ax = b}

Applications: logic programming, error correction in telecommunications

Problem: Ax=b+e, AcR™" m>>n
{Noisy) Error (e): small, evenly distributed entries

Solution (x.s): X_s € argmin||Ax — b — e||?
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Randomized Kaczmarz

RK

1. Start with initial guess xg

) T
i — a"k Xk

b . .
2. Xpp1 = Xk + a;, where iy, € [m] is chosen randomly

llai 11
3. Repeat (2)
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Randomized Kaczmarz

RK

1. Start with initial guess xg
bi, —a; . .
2. Xpp1 = Xk + T‘a%ﬁ:ka,-k where i € [m] is chosen randomly
'k

3. Repeat (2)

Theorem (Strohmer-Vershynin, 2008)

If Ax = b is consistent and RK is used with P[ix = j] = ||a;||*/||Al|% then
iterates converge linearly in expectation with

k
1
Ellxx — x|* < (1 - ||A?-||A_1||2> llx0 — x]|%.
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Proposed Method

Goal: Use RK to detect the corrupted equations with high probability.
Lemma (H.-Needell)

Let €* = minj¢[m |Ax* — b|; = |ei| and suppose |supp(e)| = s. If

|lai|| = 1 for i € [m] and ||x — x*|| < 2€* we have that the d < s indices
of largest magnitude residual entries are contained in supp(e). That is,
we have D C supp(e), where

D = argmax |Ax — b|;.
DCIA],|D|=d ;
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Proposed Method

Goal: Use RK to detect the corrupted equations with high probability.

We call €*/2 the detection horizon.



Proposed Method

Method 1 Windowed Kaczmarz

1. procedure WK(A, b, k, W, d)

2 S=0

3 fori=1,2,...W do

4 xi = kth iterate produced by RK with xo = 0, A, b.
5

6

7

Ax,i — bl

D = d indices of the largest entries of the residual,
S=SuD
return x, where Agcx = bgc
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WK(A,bk=2,W =3,d=1): j=2,i=3,5={7,5,6}




Example

Solve A5CX = bSC'




Theoretical Guarantees

Lemma (H.-Needell)

Let €* = minjg[m |Ax* — b|; = |ei| and suppose |supp(e)| = s. Assume
that ||a;|| =1 for all i € [m] and let 0 < § < 1. Define

log (%) “
)

k* =
’7|0g (1 o azmin(Asupp(e)C)

m—s

Then in window i of the Windowed Kaczmarz method, the iterate
produced by the RK iterations, x|. satisfies

Pl ' < 3] = p = (0 - 8)(T=2)"



Theoretical Guarantee Values (Gaussian A € R°0000x100)
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Theoretical Guarantee Values (Correlated A € R°0000x10
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Theoretical Guarantee Values (Gaussian A € R°0000x100)

(1- 6)(’"{;5>k*
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Theoretical Guarantees

Theorem (H.-Needell)

Assume that ||a;|| = 1 for all i € [m] and let 0 < 6 < 1. Suppose

d > s = |supp(e)|, W < [™5"| and k* is as given in lemma 2. Then the
Windowed Kaczmarz method on A, b will detect the corrupted equations
(supp(e) C S) and the remaining equations given by Ajm _s, bym—s will
have solution x* with probability at least

pwi=1— {1(15)("75)?‘”.
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Theoretical Guarantee Values (Gaussian A € R>0000%100)
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Experimental Values (Gaussian A € R°0000x100)
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Experimental Values (Gaussian A € R°0000x100)
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ntal Values (Gaussian A € [R°0000x100)
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Experimental Values (Gaussian A € R°0000x100)
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Theoretical Guarantee Values (Correlated A € R°0000x10
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ntal Values (Correlated A € R20000%100)
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tal Values (Correlated A € R°0000%100)
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Conclusions and Future Work

randomized projection methods are able to detect corruption

often experimental results far outperform theoretical guarantees

e performance on real data

e reduce dependence on artificial parameters
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The End

Thanks! Questions?
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