An Interpretable Joint Nonnegative Matrix Factorization-Based Point Cloud Distance Measure

by Jamie Haddock
(Harvey Mudd College, Department of Mathematics)
on March 23, 2023,
Conference on Information Sciences and Systems (CISS)
joint with Hannah Friedman, Amani R. Maina-Kilaas, Julianna Schalkwyk, and
Hina Ahmed (graduating Harvey Mudd College and Pitzer College seniors)
supported by NSF DMS \#2211318

Motivation

" Dataset similarity

sses the course I have heart
issues too, but the migraines are my main
concern right now. My priority is getting
that pa
lighthe ... My doctor was great, realized it was a
luck thy heart attack really quick. I didn't quite
control know wa
oreco
and da
weaknes
expect fo
high cho
week bet
had hear
few houl
took an
from tha
attack ar
team of

rgimen and diet

I recently had a minor procedure where I was under anesthesia for it. Whenever I
woke up, I had pain in my jaw (which the
doctor si
hours lat
that seen
looked at
bloody le
back of n
chest (rig
chest (rig
tender ar
punched
other pat
... I woke up with a slightly sore throat, by 12 p.m. I started work at a buddies house, I've been
Yesterda ... had a lipoma (a bit over an inch around) ceiling a over my right shoulder blade for years nature of now. Never hurt at all before, until 3 days neck get migraine. The day felt prett felt prett chills an ignored i at 101.5 ,
chills/bd chills/bg worse if
changed

The pain

 to the li that nigthe doct
infected
either.
tomorro
tomorro
... roughly a year ago I was sitting in the office drinking a energy drink when I started to get this bad tingling sensation in my neck which caused great discomfort. Figuring out the energy drink was causing this I cut it out of my "diet". With that the pain and problems went away. But slowly (over the course of months) one by one different foods and drink have now that same effect mostly being
sugars/alcohol/caffeine. The pain I get is very isolated at the left and right occiput. Depending on what I ingest the pain I get might flow down to lower in my neck...

»
 Dataset similarity

```
        ... my migraines. Of course I have heart
issues too, but the migraines are my main
concern right now. My priority is getting
that pa
lighthe: ... My doctor was great, realized it was a
luck th. heart attack really quick. I didn't quite
lon}\begin{array}{ll}{\mathrm{ control }}&{\mathrm{ know wa }}\\{\mathrm{ to reco, }}&{\mathrm{ pain but }}
to reco, pain but
on and
and da
pain is
to doct
any pre
want m
know wa
weaknes
weaknes
high cho
week be
had hear
few hou
fow hou,
    from tha
    attack ar
    attack arg
... just stress, but my mom had migraines.
realized it was exactly what she had.
Sometim
because
because
the pain
... chest pain. I had been feeling
the pain lightheaded and nauseous. The pain wa
        of my b
        extend o
lightheaded and nauseous. The pain was
        tightness in my chest than anything. It left
        me short of breath, which was probably
        making me lightheaded. The EKG
        lightheaq
        inding me lightheaded. The EKG
        driving. indicated that my heart had several
        driving. blockages that would need a stent. My
        lighthead cardiologists were able to clear the
        lighthead blockages and I spent one night under
        most deb
        watch in the hospital
vision.
the pain
```

 watch in the hospital

After my heart attack, I completely changed my lifestyle. I quit smoking, started an exercise regimen and diet...
... I recently had a minor procedure where

I recently had a minor procedure where I was under anesthesia for it. Whenever I woke up, I had pain in my jaw (which the

doctor sa

hours lat
that seen
... I woke up with a slightly sore throat, by
looked at
bloody le Yesterd
back of n
chest (ris
the midd
tender ar
punched
other pat I've been
Yesterda ... had a lipoma (a bit over an inch around) ceiling a over my right shoulder blade for years nature o now. Never hurt at all before, until 3 days neck get ago it sy migraing The day felt prett
chills an chills an ignored
at 101.5. The pain chills/bo worse if to the li worse if

either.

tomorro
... roughly a year ago I was sitting in the office drinking a energy drink when I started to get this bad tingling sensation in my neck which caused great discomfort. Figuring out the energy drink was causing this I cut it out of my "diet". With that the pain and problems went away. But slowly (over the course of months) one by one different foods and drink have now that same effect mostly being
sugars/alcohol/caffeine. The pain I get is very isolated at the left and right occiput. Depending on what I ingest the pain I get might flow down to lower in my neck...

Understanding the similarities and differences between datasets arises in many contexts: e.g., transfer learning, plagiarism/manipulation detection, and data denoising.

" Dataset similarity

Patient Surveys

Patients

.

Term-Document Matrix

» Point Cloud Distances

Chamfer's distance:
$d_{\text {cham }}\left(X_{1}, X_{2}\right)=\frac{1}{\left|X_{1}\right|} \sum_{x \in X_{1}} \min _{\mathbf{y} \in X_{2}}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\frac{1}{\left|X_{2}\right|} \sum_{\mathbf{y} \in X_{2}} \min _{\mathrm{x} \in X_{1}}\|\mathbf{x}-\mathbf{y}\|_{2}^{2}$

» Point Cloud Distances

Chamfer's distance:
$d_{\text {cham }}\left(X_{1}, X_{2}\right)=\frac{1}{\left|X_{1}\right|} \sum_{x \in X_{1}} \min _{\mathbf{y} \in X_{2}}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\frac{1}{\left|X_{2}\right|} \sum_{\mathbf{y} \in X_{2}} \min _{\mathrm{x} \in X_{1}}\|\mathbf{x}-\mathbf{y}\|_{2}^{2}$

We seek a distance that is:

» Point Cloud Distances

Chamfer's distance:
$d_{\text {cham }}\left(X_{1}, X_{2}\right)=\frac{1}{\left|X_{1}\right|} \sum_{\mathbf{x} \in X_{1}} \min _{\mathbf{y} \in X_{2}}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\frac{1}{\left|X_{2}\right|} \sum_{\mathbf{y} \in X_{2}} \min _{\mathrm{x} \in X_{1}}\|\mathbf{x}-\mathbf{y}\|_{2}^{2}$

We seek a distance that is:

* More robust to outliers.

» Point Cloud Distances

Chamfer's distance:
$d_{\text {cham }}\left(X_{1}, X_{2}\right)=\frac{1}{\left|X_{1}\right|} \sum_{x \in X_{1}} \min _{\mathbf{y} \in X_{2}}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\frac{1}{\left|X_{2}\right|} \sum_{\mathbf{y} \in X_{2}} \min _{\mathrm{x} \in X_{1}}\|\mathbf{x}-\mathbf{y}\|_{2}^{2}$

We seek a distance that is:

* More robust to outliers.
* Utilizes the structure of data.

» Point Cloud Distances

Chamfer's distance:
$d_{\text {cham }}\left(X_{1}, X_{2}\right)=\frac{1}{\left|X_{1}\right|} \sum_{x \in X_{1}} \min _{\mathbf{y} \in X_{2}}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\frac{1}{\left|X_{2}\right|} \sum_{y \in X_{2}} \min _{\mathrm{x} \in X_{1}}\|\mathbf{x}-\mathbf{y}\|_{2}^{2}$

We seek a distance that is:

* More robust to outliers.
* Utilizes the structure of data.
* Helps illustrate how the data is similar or dissimilar.

Introduction

" Nonnegative Matrix Factorization (NMF)

Model: Given nonnegative data \mathbf{X}, compute nonnegative \mathbf{A} and \mathbf{S} of lower rank so that

$$
X \approx A S
$$

$\approx \begin{gathered} \\ \mathbf{A} \\ n_{1} \times r\end{gathered}$

" Nonnegative Matrix Factorization (NMF)

Model: Given nonnegative data \mathbf{X}, compute nonnegative \mathbf{A} and \mathbf{S} of lower rank so that

$$
X \approx A S
$$

$\approx \begin{gathered} \\ \mathbf{A} \\ n_{1} \times r\end{gathered}$

" Nonnegative Matrix Factorization (NMF)

\triangleright Popularized by [Lee \& Seung 1999]

» Nonnegative Matrix Factorization (NMF)

\triangleright Popularized by [Lee \& Seung 1999]
\triangleright Employed for dimensionality-reduction and topic modeling

" Nonnegative Matrix Factorization (NMF)

\triangleright Popularized by [Lee \& Seung 1999]
\triangleright Employed for dimensionality-reduction and topic modeling
\triangleright Often formulated as

$$
\min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{n_{1} \times r}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{r \times n_{2}}}\|\mathbf{X}-\mathbf{A S}\|_{F}^{2} \quad \text { or } \min _{\mathbf{A} \in \mathbb{R}_{\geq 0}^{n_{1} \times r}, \mathbf{S} \in \mathbb{R}_{\geq 0}^{r \times n_{2}}} D(\mathbf{X} \| \mathbf{A S}) .{ }^{1}
$$

[^0]
" Joint NMF

Model: Jointly factorize two nonnegative matrices \mathbf{X}_{1} and \mathbf{X}_{2}, sharing one factor matrix between the factorizations.

» Joint NME

Model: Jointly factorize two nonnegative matrices \mathbf{X}_{1} and \mathbf{X}_{2}, sharing one factor matrix between the factorizations.

Example: Semi-supervised NMF

Often applied in classification!

[^1]
" Joint NMF

Model: Jointly factorize two nonnegative matrices \mathbf{X}_{1} and \mathbf{X}_{2}, sharing one factor matrix between the factorizations.

Example: Joint NMF/Guided NMF

> Intuition: many columns of A used in representing X_{1} and X_{2} indicates dataset similarity.

[^2]
» Joint NMF (jNMF) for Similarity

NMF learns a conic representation of data

» Joint NMF (jNMF) for Similarity

NMF learns a conic representation of data

Our Method and Distance

" Our jNMF Similarity Method

Intuition: use the entries of S_{1} and S_{2} to measure how much topics are shared between datasets.

Method:

" Our JNMF Similarity Method

Intuition: use the entries of S_{1} and S_{2} to measure how much topics are shared between datasets.

Method:

* Scale each column in X_{1}, X_{2} to be mean one.
* Learn rank-k jNMF approximation, $\left[X_{1} X_{2}\right] \approx A\left[S_{1} S_{2}\right]$.
" Our jNMF Similarity Method
Intuition: use the entries of S_{1} and S_{2} to measure how much topics are shared between datasets.

Method:

* Scale each column in X_{1}, X_{2} to be mean one.
* Learn rank-k jNMF approximation, $\left[X_{1} X_{2}\right] \approx A\left[S_{1} S_{2}\right]$.
* For $i=1, \cdots, k$, define

$$
s_{i}=\max \left(\left\{s_{i j}^{(1)}\right\}_{j=1}^{n_{1}} \cup\left\{s_{i j}^{(2)}\right\}_{j=1}^{n_{2}}\right)
$$

where $s_{i 1}^{(1)}, s_{i 2}^{(1)}, \cdots, s_{i n_{1}}^{(1)}$ and $s_{i 1}^{(2)}, s_{i 2}^{(2)}, \cdots, s_{i n_{2}}^{(2)}$ are the entries of the i th rows of S_{1} and S_{2}, respectively.

" Our jNMF Similarity Method

Intuition: use the entries of S_{1} and S_{2} to measure how much topics are shared between datasets.

Method:

* Scale each column in X_{1}, X_{2} to be mean one.
* Learn rank-k jNMF approximation, $\left[X_{1} X_{2}\right] \approx A\left[S_{1} S_{2}\right]$.
* For $i=1, \cdots, k$, define

$$
s_{i}=\max \left(\left\{s_{i j}^{(1)}\right\}_{j=1}^{n_{1}} \cup\left\{s_{i j}^{(2)}\right\}_{j=1}^{n_{2}}\right)
$$

where $s_{i 1}^{(1)}, s_{i 2}^{(1)}, \cdots, s_{i n_{1}}^{(1)}$ and $s_{i 1}^{(2)}, s_{i 2}^{(2)}, \cdots, s_{i n_{2}}^{(2)}$ are the entries of the ith rows of S_{1} and S_{2}, respectively.

* For $j=1, \ldots, K$

" Our jNMF Similarity Method

Intuition: use the entries of S_{1} and S_{2} to measure how much topics are shared between datasets.

Method:

* Scale each column in X_{1}, X_{2} to be mean one.
* Learn rank-k jNMF approximation, $\left[\begin{array}{ll}X_{1} & X_{2}\end{array}\right] \approx A\left[S_{1} S_{2}\right]$.
* For $i=1, \cdots, k$, define

$$
s_{i}=\max \left(\left\{s_{i j}^{(1)}\right\}_{j=1}^{n_{1}} \cup\left\{s_{i j}^{(2)}\right\}_{j=1}^{n_{2}}\right)
$$

where $s_{i 1}^{(1)}, s_{i 2}^{(1)}, \cdots, s_{i n_{1}}^{(1)}$ and $s_{i 1}^{(2)}, s_{i 2}^{(2)}, \cdots, s_{i i_{2}}^{(2)}$ are the entries of the ith rows of S_{1} and S_{2}, respectively.

* For $j=1, \ldots, K$
* Choose $T_{i} \sim \operatorname{unif}\left(\left[0, s_{i}\right]\right)$ for $i=1,2, \cdots, k$.

" Our jNMF Similarity Method

Intuition: use the entries of S_{1} and S_{2} to measure how much topics are shared between datasets.

Method:

* Scale each column in X_{1}, X_{2} to be mean one.
* Learn rank- k jNMF approximation, $\left[X_{1} X_{2}\right] \approx A\left[S_{1} S_{2}\right]$.
* For $i=1, \cdots, k$, define

$$
s_{i}=\max \left(\left\{s_{i j}^{(1)}\right\}_{j=1}^{n_{1}} \cup\left\{s_{i j}^{(2)}\right\}_{j=1}^{n_{2}}\right)
$$

where $s_{i 1}^{(1)}, s_{i 2}^{(1)}, \cdots, s_{i n_{1}}^{(1)}$ and $s_{i 1}^{(2)}, s_{i 2}^{(2)}, \cdots, s_{i n_{2}}^{(2)}$ are the entries of the i th rows of S_{1} and S_{2}, respectively.

* For $j=1, \ldots, K$
* Choose $T_{i} \sim \operatorname{unif}\left(\left[0, s_{i}\right]\right)$ for $i=1,2, \cdots, k$.
* Compute $\boldsymbol{p}_{i}^{(j)}:=F_{i}^{(2)}\left(T_{i}\right)-F_{i}^{(1)}\left(T_{i}\right)$, where

$$
F_{i}^{(1)}\left(T_{i}\right):=\frac{1}{n_{1}} \sum_{j=1}^{n_{1}} 1\left[s_{i j}^{(1)}<T_{i}\right] \text { and } F_{i}^{(2)}\left(T_{i}\right):=\frac{1}{n_{2}} \sum_{j=1}^{n_{2}} 1\left[s_{i j}^{(2)}<T_{i}\right] .
$$

" Our jNMF Similarity Method

Intuition: use the entries of S_{1} and S_{2} to measure how much topics are shared between datasets.

Method:

* Scale each column in X_{1}, X_{2} to be mean one.
* Learn rank- k jNMF approximation, $\left[X_{1} X_{2}\right] \approx A\left[S_{1} S_{2}\right]$.
* For $i=1, \cdots, k$, define

$$
s_{i}=\max \left(\left\{s_{i j}^{(1)}\right\}_{j=1}^{n_{1}} \cup\left\{s_{i j}^{(2)}\right\}_{j=1}^{n_{2}}\right)
$$

where $s_{i 1}^{(1)}, s_{i 2}^{(1)}, \cdots, s_{i n_{1}}^{(1)}$ and $s_{i 1}^{(2)}, s_{i 2}^{(2)}, \cdots, s_{i n_{2}}^{(2)}$ are the entries of the i th rows of S_{1} and S_{2}, respectively.

* For $j=1, \ldots, K$
* Choose $T_{i} \sim \operatorname{unif}\left(\left[0, s_{i}\right]\right)$ for $i=1,2, \cdots, k$.
* Compute $\boldsymbol{p}_{i}^{(j)}:=F_{i}^{(2)}\left(T_{i}\right)-F_{i}^{(1)}\left(T_{i}\right)$, where

$$
F_{i}^{(1)}\left(T_{i}\right):=\frac{1}{n_{1}} \sum_{j=1}^{n_{1}} 1\left[s_{i j}^{(1)}<T_{i}\right] \text { and } F_{i}^{(2)}\left(T_{i}\right):=\frac{1}{n_{2}} \sum_{j=1}^{n_{2}} 1\left[s_{i j}^{(2)}<T_{i}\right] .
$$

* Return $\overline{\boldsymbol{p}}=\frac{1}{K} \sum_{j=1}^{K} \mathbf{p}^{(j)}$

» jNMF Similarity Method

" jNMF Similarity Method

$$
p_{i}^{(j)}:=F_{i}^{(2)}\left(T_{i}\right)-F_{i}^{(1)}\left(T_{i}\right)
$$

" jNMF Similarity Method

$d\left(X_{1}, X_{2}\right):=\|\overline{\mathbf{p}}\|_{1}$
$p_{i}^{(j)}:=F_{i}^{(2)}\left(T_{i}\right)-F_{i}^{(1)}\left(T_{i}\right)$

Experiments

» Swimmer Image Dataset

Swimmer Images

${ }^{1}$ Donoho, D., and Stodden, V. "When does non-negative matrix factorization give a correct decomposition into parts?." NeurIPS (2003).
» Swimmer Image Dataset

Swimmer Images

Basis vectors learned by jNMF on Swimmer dataset $X_{1}, X_{1}+N$ where N is uniform noise.
${ }^{1}$ Donoho, D., and Stodden, V. "When does non-negative matrix factorization give a correct decomposition into parts?." NeurIPS (2003).
» Swimmer Image Dataset

Basis vectors learned by jNMF on Swimmer dataset $X_{1}, X_{1}+N$ where N is uniform noise.

$$
\begin{gathered}
\overline{\boldsymbol{\rho}}=[0.063,-0.901,0.076,0.065,0.069, \\
0.058,0.058,0.069,0.079,0.079]
\end{gathered}
$$

${ }^{1}$ Donoho, D., and Stodden, V. "When does non-negative matrix factorization give a correct decomposition into parts?." NeurIPS (2003).

Swimmer Images

» Swimmer Image Dataset

Swimmer Images

» Swimmer Image Dataset

Swimmer Images

X_{2}	X_{1}	$X_{1} P_{\pi}$	λx_{1}	\tilde{X}_{1}	$X_{1}+N$	N
$d\left(X_{1}, X_{2}\right)$	0.000	0.000	0.000	0.052	1.509	2.297
$d_{\text {cham }}\left(X_{1}, X_{2}\right)$	0.000	0.000	0.000	0.000	0.741	1.560

» Swimmer Image Dataset

Swimmer Images

X_{2}	X_{1}	$X_{1} P_{\pi}$	λx_{1}	\tilde{X}_{1}	$X_{1}+N$	N
$d\left(X_{1}, X_{2}\right)$	0.000	0.000	0.000	0.052	1.509	2.297
$d_{\text {cham }}\left(X_{1}, X_{2}\right)$	0.000	0.000	0.000	0.000	0.741	1.560

» Swimmer Image Dataset

Swimmer and Inverse Swimmer:

Swimmer and Inverse Swimmer:

Swimmer and Inverse Swimmer:

$$
\begin{gathered}
\overline{\mathbf{p}}=[-0.999,1.000,0.010,-0.017,0.003, \\
-0.004,0.015,0.004,-0.001,-0.000]
\end{gathered}
$$

jNMF Distance
" 20 Newsgroups Dataset

jNMF Distance

Chamfer Distance

Conclusions

Conclusions

» Conclusions

\triangleright jNMF provides information about dataset similarity and dissimilarity
\triangleright jNMF provides information about dataset similarity and dissimilarity

\triangleright we can aggregate this information using samples from the empirical distribution function to form a vector indicating which dataset learned basis vectors represent, $\overline{\boldsymbol{\rho}}$

" Conclusions

\triangleright jNMF provides information about dataset similarity and dissimilarity

\triangleright we can aggregate this information using samples from the empirical distribution function to form a vector indicating which dataset learned basis vectors represent, $\overline{\boldsymbol{p}}$
\triangleright the information can be further aggregated to yield a distance, $d\left(X_{1}, X_{2}\right)=\|\overline{\boldsymbol{p}}\|_{1}$

, Conclusions

\triangleright jNMF provides information about dataset similarity and dissimilarity

\triangleright we can aggregate this information using samples from the empirical distribution function to form a vector indicating which dataset learned basis vectors represent, $\overline{\boldsymbol{p}}$
\triangleright the information can be further aggregated to yield a distance, $d\left(X_{1}, X_{2}\right)=\|\overline{\boldsymbol{p}}\|_{1}$
\triangleright initial experiments are promising

Questions?

[1] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
[2] Hyekyoung Lee, Jiho Yoo, and Seungjin Choi. Semi-supervised nonnegative matrix factorization. IEEE Signal Processing Letters, 17(1):4-7, 2009.
[3] J. Haddock, L. Kassab, S. Li, A. Kryshchenko, R. Grotheer, E. Sizikova, C. Wang, T. Merkh, R. W. M. A. Madushani, M. Ahn, D. Needell, and K. Leonard. Semi-supervised nonnegative matrix factorization models for document classification. In Asilomar Conf. on Signals, Systems, Computers (ACSSC), 2021.
[4] Hannah Kim, Jaegul Choo, Jingu Kim, Chandan K Reddy, and Haesun Park. Simultaneous discovery of common and discriminative topics via joint nonnegative matrix factorization. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 567-576, 2015.
[5] J. Vendrow, J. Haddock, E. Rebrova, and D. Needell. On a guided nonnegative matrix factorization. In Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), 2021.
[6] David Donoho and Victoria Stodden. When does non-negative matrix factorization give a correct decomposition into parts? Advances in neural information processing systems, 16, 2003.

[^0]: $1_{\text {information divergence } D(\mathbf{A} \| \mathbf{B})}=\sum_{i, j}\left(\mathbf{A}_{i j} \log \frac{\mathbf{A}_{i j}}{\mathbf{B}_{i j}}-\mathbf{A}_{i j}+\mathbf{B}_{i j}\right)$

[^1]: ${ }^{1}$ Lee, H., Yoo, J., and Choi, S. "Semi-supervised nonnegative matrix factorization." IEEE Signal Processing Letters 17.1 (2009): 4-7.
 H., et al. "Semi-supervised Nonnegative Matrix Factorization for Document Classification." 2021 55th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2021.

[^2]: ${ }^{1}$ Kim, H., et al. "Simultaneous discovery of common and discriminative topics via joint nonnegative matrix factorization." Proc. ACM SIGKDD Int. Conf. Knowl. Disc. Data Mining. 2015.
 Vendrow, J., H., et al. "On a guided nonnegative matrix factorization." IEEE Int. Conf. Acoust. Speech Sig. Process. (ICASSP), 2021.

