Wolfe's Combinatorial Method is Exponential

Jamie Haddock
UCLA Combinatorics Seminar, February 7, 2019
Computational and Applied Mathematics, UCLA

joint with Jesús De Loera and Luis Rademacher (UC Davis)
https://arxiv.org/abs/1710.02608

Minimum Norm Point (MNP (P))

Minimum Norm Point in Polytope

We are interested in solving the problem (MNP (P)):

$$
\min _{\mathbf{x} \in P}\|\mathbf{x}\|_{2}
$$

where P is a polytope, and determining the minimum dimension face, F, which achieves distance $\|\mathbf{x}\|_{2}$.

Minimum Norm Point in Polytope

We are interested in solving the problem (MNP (P)):

$$
\min _{\mathbf{x} \in P}\|\mathbf{x}\|_{2}
$$

where P is a polytope, and determining the minimum dimension face, F, which achieves distance $\|\mathbf{x}\|_{2}$.

Note: We consider polytopes, P, given in V-representation as the convex hull of points $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}$,

$$
P=\left\{\sum_{i=1}^{m} \lambda_{i} \mathbf{p}_{i}: \sum_{i=1}^{m} \lambda_{i}=1, \lambda_{i} \geq 0 \text { for all } i=1,2, \ldots, m\right\}
$$

Minimum Norm Point in Polytope

O•

Minimum Norm Point in Polytope

O•

Some Simple Facts

\triangleright MNP is a convex quadratic program

Some Simple Facts

\triangleright MNP is a convex quadratic program
\triangleright can be solved via interior-point methods

Some Simple Facts

\triangleright MNP is a convex quadratic program
\triangleright can be solved via interior-point methods
\triangleright MNP of a polytope given by rational points is rational

Some Simple Facts

\triangleright MNP is a convex quadratic program
\triangleright can be solved via interior-point methods
\triangleright MNP of a polytope given by rational points is rational permits combinatorial algorithms

Applications

- arbitrary polytope projection

Applications

- arbitrary polytope projection
- nearest point problem for transportation polytopes

Applications

- arbitrary polytope projection
- nearest point problem for transportation polytopes
- subroutine in colorful linear programming

Applications

- arbitrary polytope projection
- nearest point problem for transportation polytopes
- subroutine in colorful linear programming
- subroutine in submodular function minimization

Applications

- arbitrary polytope projection
- nearest point problem for transportation polytopes
- subroutine in colorful linear programming
- subroutine in submodular function minimization
- machine learning - vision, large-scale learning

Applications

- arbitrary polytope projection
- nearest point problem for transportation polytopes
- subroutine in colorful linear programming
- subroutine in submodular function minimization
- machine learning - vision, large-scale learning
- compute distance to polytope

Applications

Theorem (De Loera, H., Rademacher '17)
Linear programming reduces to distance to a simplex in vertex-representation in strongly-polynomial time.

Applications

Theorem (De Loera, H., Rademacher '17)

Linear programming reduces to distance to a simplex in
vertex-representation in strongly-polynomial time.
If a strongly-polynomial method for projection onto a polytope exists then this gives a strongly-polynomial method for LP.

Applications

Theorem (De Loera, H., Rademacher '17)

Linear programming reduces to distance to a simplex in
vertex-representation in strongly-polynomial time.
If a strongly-polynomial method for projection onto a polytope exists then this gives a strongly-polynomial method for LP.

It was previously known that linear programming reduces to MNP on a polytope in weakly-polynomial time [Fujishige, Hayashi, Isotani '06].

Spoiler

Theorem (De Loera, H., Rademacher '17)

There exists a family of polytopes on which Wolfe's method requires exponential time to compute the MNP.

Wolfe's Optimality Condition

Theorem (Wolfe '74)
Let $P=\operatorname{conv}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right)$. Then $\mathbf{x} \in P$ is $M N P(P)$ if and only if

$$
\mathbf{x}^{T} \mathbf{p}_{j} \geq\|\mathbf{x}\|_{2}^{2} \text { for all } j=1,2, \ldots, m
$$

Wolfe's Optimality Condition

Theorem (Wolfe '74)
Let $P=\operatorname{conv}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right)$. Then $\mathbf{x} \in P$ is $M N P(P)$ if and only if

$$
\mathbf{x}^{T} \mathbf{p}_{j} \geq\|\mathbf{x}\|_{2}^{2} \text { for all } j=1,2, \ldots, m
$$

Wolfe's Optimality Condition

Theorem (Wolfe '74)
Let $P=\operatorname{conv}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right)$. Then $\mathbf{x} \in P$ is $M N P(P)$ if and only if

$$
\mathbf{x}^{T} \mathbf{p}_{j} \geq\|\mathbf{x}\|_{2}^{2} \text { for all } j=1,2, \ldots, m
$$

Wolfe's Optimality Condition

Theorem (Wolfe '74)
Let $P=\operatorname{conv}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right)$. Then $\mathbf{x} \in P$ is $M N P(P)$ if and only if

$$
\mathbf{x}^{T} \mathbf{p}_{j} \geq\|\mathbf{x}\|_{2}^{2} \text { for all } j=1,2, \ldots, m
$$

Wolfe's Method

Philip Wolfe

- Frank-Wolfe method
- Dantzig-Wolfe decomposition
- simplex method for quadratic programming

Intuition and Definitions

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Intuition and Definitions

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Def: An affinely independent set of points $Q=\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{k}\right\}$ is a corral if $\operatorname{MNP}(\operatorname{aff}(Q)) \in \operatorname{relint}(\operatorname{conv}(Q))$.

Intuition and Definitions

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Def: An affinely independent set of points $Q=\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{k}\right\}$ is a corral if $\operatorname{MNP}(\operatorname{aff}(Q)) \in \operatorname{relint}(\operatorname{conv}(Q))$.

$\stackrel{\circ}{0}$

Intuition and Definitions

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Def: An affinely independent set of points $Q=\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{k}\right\}$ is a corral if $\operatorname{MNP}(\operatorname{aff}(Q)) \in \operatorname{relint}(\operatorname{conv}(Q))$.

Intuition and Definitions

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Def: An affinely independent set of points $Q=\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{k}\right\}$ is a corral if $\operatorname{MNP}(\operatorname{aff}(Q)) \in \operatorname{relint}(\operatorname{conv}(Q))$.

Intuition and Definitions

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Def: An affinely independent set of points $Q=\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{k}\right\}$ is a corral if $\operatorname{MNP}(\operatorname{aff}(Q)) \in \operatorname{relint}(\operatorname{conv}(Q))$.

$\stackrel{\bullet}{0}$

Intuition and Definitions

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Def: An affinely independent set of points $Q=\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{k}\right\}$ is a corral if $\operatorname{MNP}(\operatorname{aff}(Q)) \in \operatorname{relint}(\operatorname{conv}(Q))$.

$\stackrel{\bullet}{0}$

Note: Singletons are corrals.

Intuition and Definitions

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Def: An affinely independent set of points $Q=\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{k}\right\}$ is a corral if $\operatorname{MNP}(\operatorname{aff}(Q)) \in \operatorname{relint}(\operatorname{conv}(Q))$.

Note: Singletons are corrals.
Note: There is a corral in P whose convex hull contains MNP (P).

Intuition

Wolfe's method : combinatorial method for computing projection onto a vertex-representation polytope

Intuition

Wolfe's method : combinatorial method for computing projection onto
a vertex-representation polytope

- pivots between corrals which may contain MNP (P)

Intuition

Wolfe's method : combinatorial method for computing projection onto
a vertex-representation polytope

- pivots between corrals which may contain MNP (P)
- projects onto affine hull of sets to check whether a corral

Intuition

Wolfe's method : combinatorial method for computing projection onto
a vertex-representation polytope

- pivots between corrals which may contain MNP (P)
- projects onto affine hull of sets to check whether a corral
- optimality criterion checks if correct corral

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not } \operatorname{MNP}(P) \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C))_{\overline{x y}}^{\operatorname{argmin}}}{ }\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in \mathbf{P}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathbf{m}}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not } \operatorname{MNP}(P) \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C))_{\text {ㅈ́ }}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& \mathbf{C}=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not MNP(P) } \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C))_{\text {ㅈ́ }}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\}
$$

$$
C=\{\mathbf{x}\}
$$

while x is not $\operatorname{MNP}(P)$

$$
\begin{aligned}
& \mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
& C=C \cup\left\{\mathbf{p}_{j}\right\} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& \text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C) \cap \overline{\mathbf{x}}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z}
\end{aligned}
$$ are on different faces of $\operatorname{conv}(C)$

$$
\begin{aligned}
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C))
\end{aligned}
$$

$$
x=y
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not MNP(P) } \\
& \begin{array}{l}
\mathbf{p}_{\mathbf{j}} \in\left\{\mathbf{p} \in \mathbf{P}: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C))_{\overline{x y}}^{\operatorname{argmin}}}{ }\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not MNP(P) } \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
\mathbf{C}=\mathbf{C} \cup\left\{\mathbf{p}_{\mathbf{j}}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C))_{\text {ㅈ́ }}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not MNP(P) } \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\mathbf{M N P}(\operatorname{aff}(\mathbf{C})) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C))_{\text {ㅈ́ }}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not MNP(P) } \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \mathbf{r e l i n t}(\operatorname{conv}(\mathbf{C}))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C) \cap \overline{\mathbf{x y}}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not } \operatorname{MNP}(P) \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C))_{\text {xy }}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\}
$$

$$
C=\{\mathbf{x}\}
$$

while x is not $\operatorname{MNP}(P)$

$$
\begin{aligned}
& \mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
& C=C \cup\left\{\mathbf{p}_{j}\right\} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& \text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C) \cap \overline{\mathrm{xy}}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z}
\end{aligned}
$$ are on different faces of $\operatorname{conv}(C)$

$$
\begin{aligned}
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C))
\end{aligned}
$$

$$
x=y
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not MNP(P) } \\
& \begin{array}{l}
\mathbf{p}_{\mathbf{j}} \in\left\{\mathbf{p} \in \mathbf{P}: \mathbf{x}^{\boldsymbol{\top}} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C))_{\overline{x y}}^{\operatorname{argmin}}}{ }\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not MNP(P) } \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
\mathbf{C}=\mathbf{C} \cup\left\{\mathbf{p}_{\mathbf{j}}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C))_{\overline{x y}}^{\operatorname{argmin}}}{ }\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not MNP(P) } \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\mathbf{M N P}(\operatorname{aff}(\mathbf{C})) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C))_{\overline{x y}}^{\operatorname{argmin}}}{ }\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not MNP(P) } \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \mathbf{r e l i n t}(\operatorname{conv}(\mathbf{C}))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C) \cap \overline{x y}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not MNP(P) } \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C) \cap \overline{\mathrm{xy}}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not MNP(P) } \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C) \cap \overline{\mathbf{x y}}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& \mathbf{C}=\mathbf{C}-\left\{\mathbf{p}_{\mathbf{i}}\right\} \text { where } \mathbf{p}_{\mathbf{i}}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(\mathrm{C}) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not } \operatorname{MNP}(P) \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C))_{\overline{x y}}^{\operatorname{argmin}}}{ }\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not MNP(P) } \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C))_{\text {xy }}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not MNP(P) } \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \mathbf{r e l i n t}(\operatorname{conv}(\mathbf{C}))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C) \cap \overline{x y}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not } \operatorname{MNP}(P) \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C))_{\text {xy }}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return \mathbf{x}

Sketch of Method

$$
\mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\}
$$

$$
C=\{\mathbf{x}\}
$$

while x is not $\operatorname{MNP}(P)$

$$
\begin{aligned}
& \mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
& C=C \cup\left\{\mathbf{p}_{j}\right\} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& \text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C) \cap \overline{\mathrm{xy}}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z}
\end{aligned}
$$ are on different faces of $\operatorname{conv}(C)$

$$
x=\mathbf{z}
$$

$$
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C))
$$

$$
x=y
$$

return \mathbf{x}

Sketch of Method

$$
\begin{aligned}
& \mathbf{x} \in P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}\right\} \\
& C=\{\mathbf{x}\} \\
& \text { while } \mathbf{x} \text { is not MNP(P) } \\
& \begin{array}{l}
\mathbf{p}_{j} \in\left\{\mathbf{p} \in P: \mathbf{x}^{\top} \mathbf{p}<\|\mathbf{x}\|_{2}^{2}\right\} \\
C=C \cup\left\{\mathbf{p}_{j}\right\} \\
\mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
\text { while } \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
\end{array} \\
& \mathbf{z}=\underset{\mathbf{z} \in \operatorname{conv}(C))_{\text {즤 }}}{\operatorname{argmin}}\|\mathbf{z}-\mathbf{y}\|_{2} \\
& C=C-\left\{\mathbf{p}_{i}\right\} \text { where } \mathbf{p}_{i}, \mathbf{z} \\
& \text { are on different faces of } \\
& \operatorname{conv}(C) \\
& \mathbf{x}=\mathbf{z} \\
& \mathbf{y}=\operatorname{MNP}(\operatorname{aff}(C)) \\
& x=y
\end{aligned}
$$

return x

Wolfe's Method

$\mathbf{x}=\mathbf{p}_{i}$ for some $i=1,2, \ldots, m, \lambda=\mathbf{e}_{i}$
$C=\{i\}$
while $\mathbf{x} \neq \mathbf{0}$ and there exists \mathbf{p}_{j} with $\mathbf{x}^{T} \mathbf{p}_{j}<\|\mathbf{x}\|_{2}^{2}$

$$
\begin{aligned}
& C=C \cup\{j\} \\
& \alpha=\underset{\sum_{i \in C} \alpha_{i}=1}{\operatorname{argmin}}\left\|\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}\right\|_{2}, \mathbf{y}=\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}
\end{aligned}
$$

while $\alpha_{i} \leq 0$ for some $i=1,2, \ldots, m$
$\theta=\min _{i: \alpha_{i} \leq 0} \frac{\lambda_{i}}{\lambda_{i}-\alpha_{i}}$
$\mathbf{z}=\theta \mathbf{y}+(1-\theta) \mathbf{x}$
$i \in\left\{j: \theta \alpha_{j}+(1-\theta) \lambda_{j}=0\right\}$
$C=C-\{i\}$
$\mathbf{x}=\mathbf{z}$
solve $\mathbf{x}=P \lambda$ for λ
$\alpha=\underset{\sum_{i \in C} \alpha_{i}=1}{\operatorname{argmin}}\left\|\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}\right\|_{2}, \mathbf{y}=\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}$

$$
x=y
$$

return \mathbf{x}

Wolfe's Method

$\mathbf{x}=\mathbf{p}_{i}$ for some $i=1,2, \ldots, m, \lambda=\mathbf{e}_{i}$
$C=\{i\}$
Choice 1: Initial vertex.
while $\mathbf{x} \neq \mathbf{0}$ and there exists \mathbf{p}_{j} with $\mathbf{x}^{\top} \mathbf{p}_{j}<\|\mathbf{x}\|_{2}^{2}$

$$
\begin{aligned}
& C=C \cup\{j\} \\
& \alpha=\underset{\sum_{i \in C} \alpha_{i}=1}{\operatorname{argmin}}\left\|\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}\right\|_{2}, \mathbf{y}=\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}
\end{aligned}
$$

$$
\text { while } \alpha_{i} \leq 0 \text { for some } i=1,2, \ldots, m
$$

$$
\theta=\min _{i: \alpha_{i} \leq 0} \frac{\lambda_{i}}{\lambda_{i}-\alpha_{i}}
$$

$$
\mathbf{z}=\theta \mathbf{y}+(1-\theta) \mathbf{x}
$$

$$
i \in\left\{j: \theta \alpha_{j}+(1-\theta) \lambda_{j}=0\right\}
$$

$$
C=C-\{i\}
$$

$$
\mathbf{x}=\mathbf{z}
$$

$$
\text { solve } \mathbf{x}=P \lambda \text { for } \lambda
$$

$$
\alpha=\underset{\sum_{i \in C} \alpha_{i}=1}{\operatorname{argmin}}\left\|\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}\right\|_{2}, \mathbf{y}=\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}
$$

$$
x=y
$$

return \mathbf{x}

Wolfe's Method

$\mathbf{x}=\mathbf{p}_{i}$ for some $i=1,2, \ldots, m, \lambda=\mathbf{e}_{i}$
$C=\{i\}$
Choice 1: Initial vertex.
while $\mathbf{x} \neq \mathbf{0}$ and there exists \mathbf{p}_{j} with $\mathbf{x}^{\top} \mathbf{p}_{j}<\|\mathbf{x}\|_{2}^{2}$

$$
\begin{aligned}
& C=C \cup\{j\} \\
& \alpha=\underset{\sum_{i \in C} \alpha_{i}=1}{\operatorname{argmin}}\left\|\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}\right\|_{2}, \mathbf{y}=\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}
\end{aligned}
$$

$$
\text { while } \alpha_{i} \leq 0 \text { for some } i=1,2, \ldots, m
$$

$$
\theta=\min _{i: \alpha_{i} \leq 0} \frac{\lambda_{i}}{\lambda_{i}-\alpha_{i}}
$$

$$
\mathbf{z}=\theta \mathbf{y}+(1-\theta) \mathbf{x}
$$

$$
i \in\left\{j: \theta \alpha_{j}+(1-\theta) \lambda_{j}=0\right\}
$$

$$
C=C-\{i\}
$$

$$
\mathbf{x}=\mathbf{z}
$$

$$
\text { solve } \mathbf{x}=P \lambda \text { for } \lambda
$$

$$
x=y
$$

$$
\alpha=\underset{\sum_{i \in C} \alpha_{i}=1}{\operatorname{argmin}}\left\|\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}\right\|_{2}, \mathbf{y}=\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}
$$

return \mathbf{x}

Wolfe's Method

$\mathbf{x}=\mathbf{p}_{i}$ for some $i=1,2, \ldots, m, \lambda=\mathbf{e}_{i}$
$C=\{i\}$
Choice 1: Initial vertex.
while $\mathbf{x} \neq \mathbf{0}$ and there exists \mathbf{p}_{j} with $\mathbf{x}^{\top} \mathbf{p}_{j}<\|\mathbf{x}\|_{2}^{2}$

$$
\begin{aligned}
& C=C \cup\{j\} \\
& \alpha=\underset{\sum_{i \in C} \alpha_{i}=1}{\operatorname{argmin}}\left\|\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}\right\|_{2}, \mathbf{y}=\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}
\end{aligned}
$$

$$
\text { while } \alpha_{i} \leq 0 \text { for some } i=1,2, \ldots, m
$$

$$
\theta=\min _{i: \alpha_{i} \leq 0} \frac{\lambda_{i}}{\lambda_{i}-\alpha_{i}}
$$

$$
\mathbf{z}=\theta \mathbf{y}+(1-\theta) \mathbf{x}
$$

$$
i \in\left\{j: \theta \alpha_{j}+(1-\theta) \lambda_{j}=0\right\}
$$

$$
C=C-\{i\}
$$

$$
x=\mathbf{z}
$$

$$
\text { solve } \mathbf{x}=P \lambda \text { for } \lambda
$$

$$
x=y
$$

$$
\alpha=\underset{\sum_{i \in C} \alpha_{i}=1}{\operatorname{argmin}}\left\|\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}\right\|_{2}, \mathbf{y}=\sum_{i \in C} \alpha_{i} \mathbf{p}_{i}
$$

return \mathbf{x}

Rules

Initial: minnorm
Insertion: linopt (select \mathbf{p}_{j} minimizing $\mathbf{x}^{\top} \mathbf{p}_{j}$), minnorm

Rules

Initial: minnorm
Insertion: linopt (select \mathbf{p}_{j} minimizing $\mathbf{x}^{\top} \mathbf{p}_{j}$), minnorm

- insertion rules have different benefits

Rules

Initial: minnorm
Insertion: linopt (select \mathbf{p}_{j} minimizing $\mathbf{x}^{\top} \mathbf{p}_{j}$), minnorm

- insertion rules have different benefits
- behavior depends on choice of insertion rule

Rules

Initial: minnorm
Insertion: linopt (select \mathbf{p}_{j} minimizing $\mathbf{x}^{\top} \mathbf{p}_{j}$), minnorm

- insertion rules have different benefits
- behavior depends on choice of insertion rule
- examples in which each insertion rule is better

Related Methods

\triangleright von Neumann's algorithm for linear programming

Related Methods

\triangleright von Neumann's algorithm for linear programming
\triangleright Frank-Wolfe method for convex programming (and variants)

Related Methods

\triangleright von Neumann's algorithm for linear programming
\triangleright Frank-Wolfe method for convex programming (and variants)
\triangleright Gilbert's procedure for quadratic programming

Related Methods

\triangleright von Neumann's algorithm for linear programming
\triangleright Frank-Wolfe method for convex programming (and variants)
\triangleright Gilbert's procedure for quadratic programming

- projection onto simple convex hull

Related Methods

\triangleright Hanson-Lawson procedure for non-negative least-squares

Related Methods

\triangleright Hanson-Lawson procedure for non-negative least-squares
\triangleright Betke's combinatorial relaxation algorithm for linear feasibility

Related Methods

\triangleright Hanson-Lawson procedure for non-negative least-squares
\triangleright Betke's combinatorial relaxation algorithm for linear feasibility

- combinatorial methods

Related Methods

\triangleright Fujishige-Wolfe method for submodular optimization

Related Methods

\triangleright Fujishige-Wolfe method for submodular optimization
\triangleright Bárány-Onn approximation method for colorful linear programming

Related Methods

\triangleright Fujishige-Wolfe method for submodular optimization
\triangleright Bárány-Onn approximation method for colorful linear programming

- combinatorial problems

Previous Results

- \# iterations $\leq \sum_{i=1}^{n+1} i\binom{m}{i}$ with any rules (Wolfe '74)

Previous Results

- \# iterations $\leq \sum_{i=1}^{n+1} i\binom{m}{i}$ with any rules (Wolfe '74)
- ϵ-approximate solution in $\mathcal{O}\left(n M^{2} / \epsilon\right)$ iterations with linopt insertion rule (Chakrabarty, Jain, Kothari '14)

Previous Results

- \# iterations $\leq \sum_{i=1}^{n+1} i\binom{m}{i}$ with any rules (Wolfe '74)
- ϵ-approximate solution in $\mathcal{O}\left(n M^{2} / \epsilon\right)$ iterations with linopt insertion rule (Chakrabarty, Jain, Kothari '14)
- ϵ-approximate solution in $\mathcal{O}(\rho \log (1 / \epsilon))$ iterations with linopt insertion rule (Lacoste-Julien, Jaggi '15)

Previous Results

- \# iterations $\leq \sum_{i=1}^{n+1} i\binom{m}{i}$ with any rules (Wolfe '74)
- ϵ-approximate solution in $\mathcal{O}\left(n M^{2} / \epsilon\right)$ iterations with linopt insertion rule (Chakrabarty, Jain, Kothari '14)
- ϵ-approximate solution in $\mathcal{O}(\rho \log (1 / \epsilon))$ iterations with linopt insertion rule (Lacoste-Julien, Jaggi '15)
\triangleright pseudo-polynomial complexity

Exponential Behavior

Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

- dimension and number of points grow linearly

Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

- dimension and number of points grow linearly
- number of corrals visited grows exponentially

Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

- dimension and number of points grow linearly
- number of corrals visited grows exponentially

Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

Recursively Defined Instances

Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

Recursively Defined Instances

$\operatorname{dim}: d-2$
Instance: $P(d-2)$
Points: $2 d-5$

Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

Recursively Defined Instances

dim: $d-2$
Instance: $P(d-2)$
$\xrightarrow{+2 \mathrm{dim}}$
Points: $2 d-5 \quad+4$ points

Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

Recursively Defined Instances

$\operatorname{dim}: d-2$
Instance: $P(d-2)$
Points: $2 d-5 \quad+4$ points
dim: d
Instance: $P(d)$
Points: $2 d-1$

Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

Recursively Defined Instances

$\operatorname{dim}: d-2$
Instance: $P(d-2)$
Points: $2 d-5 \quad+4$ points
dim: d
Instance: $P(d)$
Points: $2 d-1$
Instance: $P(d)$
Points: $2 d-1$

$$
P(1):=\{1\}
$$

Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

Recursively Defined Instances

dim: $d-2$
Instance: $P(d-2)$
Points: $2 d-5 \quad+4$ points
dim: d
Instance: $P(d)$
Points: $2 d-1$

$$
\begin{aligned}
& P(1):=\{1\} \\
& P(3):=\left\{(1,0,0), \mathbf{p}_{3}, \mathbf{q}_{3}, \mathbf{r}_{3}, \mathbf{s}_{3}\right\}
\end{aligned}
$$

Exponential Example: dim 3

Exponential Example: dim 3

Exponential Example: dim 3

Exponential Example

$$
P(d)=\left(\begin{array}{ccc}
P(d-2) & 0 & 0 \\
\frac{1}{2} \mathbf{o}_{\mathbf{d}-2}^{*} & \frac{m_{d-2}}{4} & M_{d-2} \\
\frac{1}{2} \mathbf{o}_{\mathbf{d}-2}^{*} & \frac{\frac{m_{d-2}}{4}}{4} & -\left(M_{d-2}+1\right) \\
0 & \frac{m_{d-2}^{4}}{4} & M_{d-2}+2 \\
0 & \frac{m_{d-2}}{4} & -\left(M_{d-2}+3\right)
\end{array}\right)
$$

$$
\begin{aligned}
& \mathbf{o}_{\mathbf{d}-\mathbf{2}}^{*}: \operatorname{MNP}(P(d-2)) \\
& m_{d-2} \leq\left\|\mathbf{o}_{\mathbf{d}-\mathbf{2}}^{*}\right\|_{\infty} \\
& M_{d-2} \geq \max _{\mathbf{p} \in P(d-2)}\|\mathbf{p}\|_{1}
\end{aligned}
$$

Exponential Example

Exponential Example

Theorem (De Loera, H., Rademacher '17)
Consider the execution of Wolfe's method with the minnorm insertion rule on input $P(d)$ where $d=2 k-1$. Then the sequence of corrals, $C(d)$ has length $5 \cdot 2^{k-1}-4$.

Exponential Example

Theorem (De Loera, H., Rademacher '17)
Consider the execution of Wolfe's method with the minnorm insertion rule on input $P(d)$ where $d=2 k-1$. Then the sequence of corrals, $C(d)$ has length $5 \cdot 2^{k-1}-4$.

Key Lemma: Sequence of Corrals

Exponential Example

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion rule on input $P(d)$ where $d=2 k-1$. Then the sequence of corrals, $C(d)$ has length $5 \cdot 2^{k-1}-4$.

Key Lemma: Sequence of Corrals

$$
C(d-2)
$$

Exponential Example

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion rule on input $P(d)$ where $d=2 k-1$. Then the sequence of corrals, $C(d)$ has length $5 \cdot 2^{k-1}-4$.

Key Lemma: Sequence of Corrals

$$
C(d-2) \quad \longrightarrow
$$

Exponential Example

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion rule on input $P(d)$ where $d=2 k-1$. Then the sequence of corrals, $C(d)$ has length $5 \cdot 2^{k-1}-4$.

Key Lemma: Sequence of Corrals

$$
C(d-2) \quad \longrightarrow \quad \begin{aligned}
& C(d-2) \\
& O(d-2) \mathbf{p}_{\mathbf{d}} \\
& \mathbf{p}_{\mathbf{d}} \mathbf{q}_{\mathbf{d}} \\
& \mathbf{q}_{\mathbf{d}} \mathbf{r}_{\mathbf{d}} \\
& \mathbf{r}_{\mathbf{d}} \mathbf{s}_{\mathbf{d}} \\
& C(d-2) \mathbf{r}_{\mathbf{d}} \mathbf{s}_{\mathbf{d}}
\end{aligned}
$$

Exponential Example

Theorem (De Loera, H., Rademacher '17)
Consider the execution of Wolfe's method with the minnorm insertion rule on input $P(d)$ where $d=2 k-1$. Then the sequence of corrals, $C(d)$ has length $5 \cdot 2^{k-1}-4$.
Sequence of Corrals: $\operatorname{dim} 1 \rightarrow \operatorname{dim} 3$

Exponential Example

Theorem (De Loera, H., Rademacher '17)
Consider the execution of Wolfe's method with the minnorm insertion rule on input $P(d)$ where $d=2 k-1$. Then the sequence of corrals, $C(d)$ has length $5 \cdot 2^{k-1}-4$.

Sequence of Corrals: $\operatorname{dim} 1 \rightarrow \operatorname{dim} 3$

1

Exponential Example

Theorem (De Loera, H., Rademacher '17)
Consider the execution of Wolfe's method with the minnorm insertion rule on input $P(d)$ where $d=2 k-1$. Then the sequence of corrals, $C(d)$ has length $5 \cdot 2^{k-1}-4$.

Sequence of Corrals: $\operatorname{dim} 1 \rightarrow \operatorname{dim} 3$

1

Exponential Example

Theorem (De Loera, H., Rademacher '17)
Consider the execution of Wolfe's method with the minnorm insertion rule on input $P(d)$ where $d=2 k-1$. Then the sequence of corrals, $C(d)$ has length $5 \cdot 2^{k-1}-4$.

Sequence of Corrals: $\operatorname{dim} 1 \rightarrow \operatorname{dim} 3$

Three Lemmas

\triangleright a corral with a point made from MNP and orthogonal directions is still a corral
$\operatorname{span}\left(\mathbf{x}, \operatorname{span}(P)^{\perp}\right)$

Three Lemmas

\triangleright a corral with a point made from MNP and
orthogonal directions is still a corral
\triangleright the union of orthogonal corrals is still a corral

Three Lemmas

\triangleright a corral with a point made from MNP and orthogonal directions is still a corral
\triangleright the union of orthogonal corrals is still a corral
\triangleright adding orthogonal points to the corral doesn't create any available points

Sketch of Proof of Sequence $C(d): C(d-2)$

$$
P(d)=\left(\begin{array}{ccc}
P(d-2) & 0 & 0 \\
\frac{1}{2} \mathbf{o}_{\mathbf{d}-2}^{*} & \frac{m_{d-2}}{4} & M_{d-2} \\
\frac{1}{2} \mathbf{o}_{\mathbf{d}-2}^{*} & \frac{m_{d-2}}{4} & -\left(M_{d-2}+1\right) \\
0 & \frac{m_{d-2}}{4} & M_{d-2}+2 \\
0 & \frac{m_{d-2}}{4} & -\left(M_{d-2}+3\right)
\end{array}\right)
$$

$$
\mathbf{o}_{\mathbf{d}-2}^{*}: \operatorname{MNP}(P(d-2))
$$

$$
m_{d-2} \leq\left\|\mathbf{o}_{\mathbf{d}-\mathbf{2}}^{*}\right\|_{\infty}
$$

$$
M_{d-2} \geq \max _{\mathbf{p} \in P(d-2)}\|\mathbf{p}\|_{1}
$$

Sketch of Proof of Sequence $C(d): C(d-2)$

Sketch of Proof of Sequence $C(d): O(d-2) \mathbf{p}_{\mathbf{d}}$

Sketch of Proof of Sequence $C(d): O(d-2) \mathbf{p}_{\mathbf{d}}$

a corral with a point made from MNP and orthogonal directions is still a corral

Sketch of Proof of Sequence $C(d): \mathbf{p}_{\mathrm{d}} \mathbf{q}_{\mathrm{d}}$

Sketch of Proof of Sequence $C(d): \mathbf{p}_{\mathrm{d}} \mathbf{q}_{\mathrm{d}}$

Sketch of Proof of Sequence $C(d): q_{d} r_{d}$

Sketch of Proof of Sequence $C(d): q_{d} r_{d}$

Sketch of Proof of Sequence $C(d): r_{d} S_{d}$

Sketch of Proof of Sequence $C(d): r_{d} S_{d}$

Sketch of Proof of Sequence $C(d)$: $C(d-2) r_{d} s_{d}$

- the union of orthogonal corrals is still a corral
- adding orthogonal points to the corral doesn't create any available points

Conclusions

Future Directions

Future Directions

1. Find an exponential example for Wolfe's method with linopt insertion rule.

Future Directions

1. Find an exponential example for Wolfe's method with linopt insertion rule.
2. Search for types of polytopes where Wolfe's method is polynomial (e.g. base polytopes).

Future Directions

1. Find an exponential example for Wolfe's method with linopt insertion rule.
2. Search for types of polytopes where Wolfe's method is polynomial (e.g. base polytopes).
3. Understand the structure of polytopes formed by reduction of linear programs.

Future Directions

1. Find an exponential example for Wolfe's method with linopt insertion rule.
2. Search for types of polytopes where Wolfe's method is polynomial (e.g. base polytopes).
3. Understand the structure of polytopes formed by reduction of linear programs.
4. Give an average (or smoothed) analysis of Wolfe's method.

Thanks for attending!

Questions?

[1] I. Bárány and S. Onn.
Colourful linear programming and its relatives.
Mathematics of Operations Research, 22(3):550-567, 1997.
[2] D. Chakrabarty, P. Jain, and P. Kothari.
Provable submodular minimization using wolfe's algorithm.
CoRR, abs/1411.0095, 2014.
[3] J. A. De Loera, J. Haddock, and L. Rademacher.
The minimum Euclidean-norm point on a convex polytope:
Wolfes combinatorial algorithm is exponential.
2017.
[4] S. Fujishige, T. Hayashi, and S. Isotani.
The minimum-norm-point algorithm applied to submodular function minimization and linear programming.

Example: minnorm < linopt

$$
P=\operatorname{conv}\{(0.8,0.9,0),(1.5,-0.5,0),(-1,-1,2),(-4,1.5,2)\} \subset \mathbb{R}^{3}
$$

Example: minnorm < linopt

Major Cycle	Minor Cycle	C
0	0	$\left\{\mathbf{p}_{\mathbf{1}}\right\}$
1	0	$\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}\right\}$
2	0	$\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}\right\}$
3	0	$\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}, \mathbf{p}_{\mathbf{4}}\right\}$
3	1	$\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{4}}\right\}$

Major Cycle	Minor Cycle	C
0	0	$\left\{\mathbf{p}_{\mathbf{1}}\right\}$
1	0	$\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{4}}\right\}$
2	0	$\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{4}}, \mathbf{p}_{\mathbf{3}}\right\}$
2	1	$\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{3}}\right\}$
3	0	$\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{3}}, \mathbf{p}_{\mathbf{2}}\right\}$
4	0	$\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}, \mathbf{p}_{\mathbf{4}}\right\}$
4	1	$\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{4}}\right\}$

Example: minnorm < linopt

Major Cycle	Minor Cycle	C
0	0	$\left\{\mathbf{p}_{1}\right\}$
1	0	$\left\{\mathbf{p}_{1}, \mathbf{p}_{2}\right\}$
2	0	$\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$
3	1	$\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}\right\}$
3	$\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{4}\right\}$	

Major Cycle	Minor Cycle	C
0	0	$\left\{\mathbf{p}_{1}\right\}$
1	0	$\left\{\mathbf{p}_{1}, \mathbf{p}_{4}\right\}$
2	0	$\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{4}, \mathbf{p}_{3}\right\}$
2	1	$\left\{\mathbf{p}_{1}, \mathbf{p}_{3}\right\}$
3	0	$\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{3}, \mathbf{p}_{2}\right\}$
4	1	$\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}\right\}$
4	$\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{2}, \mathbf{p}_{4}\right\}$	

