Wolfe's Combinatorial Method is Exponential

Jamie Haddock

UCLA Combinatorics Seminar, February 7, 2019

Computational and Applied Mathematics, UCLA

joint with Jesús De Loera and Luis Rademacher (UC Davis) https://arxiv.org/abs/1710.02608

Minimum Norm Point (MNP(P))

We are interested in solving the problem (MNP(P)):

$$\min_{\mathbf{x}\in P}\|\mathbf{x}\|_2$$

where P is a polytope, and determining the minimum dimension face, F, which achieves distance $\|\mathbf{x}\|_2$.

We are interested in solving the problem (MNP(P)):

$$\min_{\mathbf{x}\in P}\|\mathbf{x}\|_2$$

where P is a polytope, and determining the minimum dimension face, F, which achieves distance $\|\mathbf{x}\|_2$.

Note: We consider polytopes, P, given in V-representation as the convex hull of points $\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m$,

$$P = \left\{ \sum_{i=1}^{m} \lambda_{i} \mathbf{p}_{i} : \sum_{i=1}^{m} \lambda_{i} = 1, \lambda_{i} \geq 0 \text{ for all } i = 1, 2, ..., m \right\}.$$

2

0•

ightarrow MNP is a convex quadratic program

 \triangleright MNP is a convex quadratic program

 \triangleright can be solved via interior-point methods

▷ MNP is a convex quadratic program

▷ can be solved via interior-point methods

 $\,\vartriangleright\,\mathsf{MNP}$ of a polytope given by rational points is rational

▷ MNP is a convex quadratic program

▷ can be solved via interior-point methods

> MNP of a polytope given by rational points is rational

permits combinatorial algorithms

• arbitrary polytope projection

- arbitrary polytope projection
- nearest point problem for transportation polytopes

- arbitrary polytope projection
- nearest point problem for transportation polytopes
- subroutine in colorful linear programming

- arbitrary polytope projection
- nearest point problem for transportation polytopes
- subroutine in colorful linear programming
- subroutine in submodular function minimization

- arbitrary polytope projection
- nearest point problem for transportation polytopes
- subroutine in colorful linear programming
- subroutine in submodular function minimization
- machine learning vision, large-scale learning

- arbitrary polytope projection
- nearest point problem for transportation polytopes
- subroutine in colorful linear programming
- subroutine in submodular function minimization
- machine learning vision, large-scale learning
- compute distance to polytope

Theorem (De Loera, H., Rademacher '17)

Linear programming reduces to distance to a simplex in vertex-representation in strongly-polynomial time.

Theorem (De Loera, H., Rademacher '17)

Linear programming reduces to distance to a simplex in vertex-representation in strongly-polynomial time.

If a strongly-polynomial method for projection onto a polytope exists then this gives a strongly-polynomial method for LP.

Theorem (De Loera, H., Rademacher '17)

Linear programming reduces to distance to a simplex in vertex-representation in strongly-polynomial time.

If a strongly-polynomial method for projection onto a polytope exists then this gives a strongly-polynomial method for LP.

It was previously known that linear programming reduces to MNP on a polytope in weakly-polynomial time [Fujishige, Hayashi, Isotani '06].

Spoiler

Theorem (De Loera, H., Rademacher '17)

There exists a family of polytopes on which Wolfe's method requires exponential time to compute the MNP.

Theorem (Wolfe '74)

Let
$$P = conv(\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m)$$
. Then $\mathbf{x} \in P$ is MNP(P) if and only if
$$\mathbf{x}^T \mathbf{p}_j \ge \|\mathbf{x}\|_2^2 \text{ for all } j = 1, 2, ..., m.$$

Theorem (Wolfe '74)

Let $P = conv(\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m)$. Then $\mathbf{x} \in P$ is MNP(P) if and only if $\mathbf{x}^T \mathbf{p}_j \ge \|\mathbf{x}\|_2^2 \text{ for all } j = 1, 2, ..., m.$

Theorem (Wolfe '74)

Let $P = conv(\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m)$. Then $\mathbf{x} \in P$ is MNP(P) if and only if $\mathbf{x}^T \mathbf{p}_j \ge \|\mathbf{x}\|_2^2 \text{ for all } j = 1, 2, ..., m.$

Theorem (Wolfe '74)

Let $P = conv(\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m)$. Then $\mathbf{x} \in P$ is MNP(P) if and only if $\mathbf{x}^T \mathbf{p}_i \ge \|\mathbf{x}\|_2^2$ for all i = 1, 2, ..., m.

Wolfe's Method

Philip Wolfe

- Frank-Wolfe method
- Dantzig-Wolfe decomposition
- simplex method for quadratic programming

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Def: An affinely independent set of points $Q = \{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_k\}$ is a *corral* if MNP(aff(Q)) \in relint(conv(Q)).

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Def: An affinely independent set of points $Q = \{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_k\}$ is a *corral* if MNP(aff(Q)) \in relint(conv(Q)).

Note: Singletons are corrals.

Idea: Exploit linear information about the problem in order to progress towards the quadratic solution.

Def: An affinely independent set of points $Q = \{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_k\}$ is a *corral* if $\mathsf{MNP}(\mathsf{aff}(Q)) \in \mathsf{relint}(\mathsf{conv}(Q))$.

Note: Singletons are corrals.

Note: There is a corral in P whose convex hull contains MNP(P).

Intuition

Wolfe's method: combinatorial method for computing projection onto a vertex-representation polytope

Intuition

Wolfe's method: combinatorial method for computing projection onto a vertex-representation polytope
- pivots between corrals which may contain MNP(P)

Intuition

Wolfe's method: combinatorial method for computing projection onto

- a vertex-representation polytope
- pivots between corrals which may contain $\mathsf{MNP}(P)$
- projects onto affine hull of sets to check whether a corral

Intuition

Wolfe's method: combinatorial method for computing projection onto

- a vertex-representation polytope
- pivots between corrals which may contain $\mathsf{MNP}(P)$
- projects onto affine hull of sets to check whether a corral
- optimality criterion checks if correct corral

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
while x is not MNP(P)
            \mathbf{p}_i \in {\{\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2\}}
            C = C \cup \{\mathbf{p}_i\}
            y = MNP(aff(C))
            while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                        \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                               z \in conv(C) \cap \overline{xy}
                        C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                           are on different faces of
                           conv(C)
                        x = z
                        y = MNP(aff(C))
            x = y
return x
```

$$\mathbf{p}_{2} = (3,0)$$
 $\mathbf{p}_{3} = (-2,1)$

 $\mathbf{p}_1 = (0, 2)$

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
while x is not MNP(P)
            \mathbf{p}_i \in {\{\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2\}}
            C = C \cup \{\mathbf{p}_i\}
            y = MNP(aff(C))
            while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                        \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                               z \in conv(C) \cap \overline{xy}
                        C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                           are on different faces of
                           conv(C)
                        x = z
                        y = MNP(aff(C))
            x = y
return x
```

$$\mathbf{p}_{1} = (0,2)$$
 $\mathbf{p}_{2} = (3,0)$
 $\mathbf{p}_{3} = (-2,1)$
 $\mathbf{p}_{1} = \mathbf{x}$
 \mathbf{p}_{3}
 \mathbf{p}_{4}

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                      \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                      \mathbf{p}_2 = (3,0)
            \mathbf{p}_i \in {\{\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2\}}
                                                                                      \mathbf{p}_3 = (-2, 1)
            C = C \cup \{\mathbf{p}_i\}
            y = MNP(aff(C))
                                                                                                         \mathbf{p}_1 = \mathbf{x}
            while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                        \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                                z \in conv(C) \cap \overline{xy}
                        C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                            are on different faces of
                            conv(C)
                                                                                      C = \{p_1\}
                        x = z
                        y = MNP(aff(C))
            x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                     \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                     \mathbf{p}_2 = (3,0)
            \mathbf{p}_i \in \{\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2\}
                                                                                     \mathbf{p}_3 = (-2, 1)
            C = C \cup \{\mathbf{p}_i\}
            y = MNP(aff(C))
                                                                                                       p_1 = x
            while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                        \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                               z \in conv(C) \cap \overline{xy}
                        C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                           are on different faces of
                           conv(C)
                                                                                     C = \{ \mathbf{p}_1 \}
                        x = z
                        y = MNP(aff(C))
            x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                 \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                 \mathbf{p}_2 = (3,0)
           p_i \in \{p \in P : x^Tp < ||x||_2^2\}
                                                                                 \mathbf{p}_3 = (-2, 1)
           C = C \cup \{\mathbf{p}_i\}
           y = MNP(aff(C))
                                                                                                  \mathbf{p}_1 = \mathbf{x}
           while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                       \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                              z \in conv(C) \cap \overline{xy}
                       C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                          are on different faces of
                          conv(C)
                                                                                 C = \{ \mathbf{p}_1 \}
                       x = z
                       y = MNP(aff(C))
           x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                     \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                     \mathbf{p}_2 = (3,0)
            \mathbf{p}_i \in \{\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2\}
                                                                                     \mathbf{p}_3 = (-2, 1)
            C = C \cup \{p_i\}
            y = MNP(aff(C))
                                                                                                       \mathbf{p}_1 = \mathbf{x}
            while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                        \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                               z \in conv(C) \cap \overline{xy}
                        C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                           are on different faces of
                           conv(C)
                                                                                     C = \{p_1, p_2\}
                        x = z
                        y = MNP(aff(C))
            x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                        \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                        \mathbf{p}_2 = (3,0)
            \mathbf{p}_i \in \{\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2\}
                                                                                        \mathbf{p}_3 = (-2, 1)
            C = C \cup \{\mathbf{p}_i\}
            y = MNP(aff(C))
                                                                                                           \mathbf{p}_1 = \mathbf{x}
            while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                         \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                                z \in conv(C) \cap \overline{xy}
                         C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                             are on different faces of
                            conv(C)
                                                                                         C = \{\mathbf{p}_1, \mathbf{p}_2\}
                         x = z
                         y = MNP(aff(C))
            x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                   \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                   \mathbf{p}_2 = (3,0)
           \mathbf{p}_i \in \{ \mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2 \}
                                                                                   \mathbf{p}_3 = (-2, 1)
           C = C \cup \{\mathbf{p}_i\}
           y = MNP(aff(C))
                                                                                                     \mathbf{p}_1 = \mathbf{x}
           while y \notin relint(conv(C))
                       \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                              z \in conv(C) \cap \overline{xy}
                       C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                           are on different faces of
                           conv(C)
                                                                                   C = \{\mathbf{p}_1, \mathbf{p}_2\}
                       x = z
                       y = MNP(aff(C))
           x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                      \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                      \mathbf{p}_2 = (3,0)
            \mathbf{p}_i \in \{ \mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2 \}
                                                                                      \mathbf{p}_3 = (-2, 1)
            C = C \cup \{\mathbf{p}_i\}
            y = MNP(aff(C))
            while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                                                                                                                          x = y
                        \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                                z \in conv(C) \cap \overline{xy}
                        C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                            are on different faces of
                            conv(C)
                                                                                       C = \{\mathbf{p}_1, \mathbf{p}_2\}
                        x = z
                        y = MNP(aff(C))
            x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                      \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                      \mathbf{p}_2 = (3,0)
            \mathbf{p}_i \in \{\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2\}
                                                                                      \mathbf{p}_3 = (-2, 1)
            C = C \cup \{\mathbf{p}_i\}
            y = MNP(aff(C))
            while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                                                                                                                         x = y
                        \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                               z \in conv(C) \cap \overline{xy}
                        C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                            are on different faces of
                           conv(C)
                                                                                      C = \{\mathbf{p}_1, \mathbf{p}_2\}
                        x = z
                        y = MNP(aff(C))
            x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                               \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                               \mathbf{p}_2 = (3,0)
           p_i \in \{p \in P : x^Tp < ||x||_2^2\}
                                                                               \mathbf{p}_3 = (-2, 1)
           C = C \cup \{\mathbf{p}_i\}
           y = MNP(aff(C))
           while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                                                                                                                x = y
                      \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                             z \in conv(C) \cap \overline{xy}
                      C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                          are on different faces of
                         conv(C)
                                                                                C = \{\mathbf{p}_1, \mathbf{p}_2\}
                      x = z
                      y = MNP(aff(C))
           x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                  \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                  \mathbf{p}_2 = (3,0)
           \mathbf{p}_i \in \{ \mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2 \}
                                                                                  \mathbf{p}_3 = (-2, 1)
           C = C \cup \{p_i\}
           y = MNP(aff(C))
           while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                                                                                                                    x = y
                       \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                              z \in conv(C) \cap \overline{xy}
                       C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                           are on different faces of
                          conv(C)
                                                                                  C = \{p_1, p_2, p_3\}
                       x = z
                       y = MNP(aff(C))
           x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                       \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                       \mathbf{p}_2 = (3,0)
            \mathbf{p}_i \in \{\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2\}
                                                                                       \mathbf{p}_3 = (-2, 1)
            C = C \cup \{\mathbf{p}_i\}
            y = MNP(aff(C))
            while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                        \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                                z \in conv(C) \cap \overline{xy}
                         C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                            are on different faces of
                                                                                                          0 = v
                            conv(C)
                                                                                       C = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}
                        x = z
                        y = MNP(aff(C))
            x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                 \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                 \mathbf{p}_2 = (3,0)
           \mathbf{p}_i \in \{ \mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2 \}
                                                                                 \mathbf{p}_3 = (-2, 1)
           C = C \cup \{\mathbf{p}_i\}
           y = MNP(aff(C))
           while y \notin relint(conv(C))
                       \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                              z \in conv(C) \cap \overline{xy}
                       C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                          are on different faces of
                                                                                                   0 = v
                          conv(C)
                                                                                  C = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}
                       x = z
                       y = MNP(aff(C))
           x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                  \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                  \mathbf{p}_2 = (3,0)
           \mathbf{p}_i \in \{ \mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2 \}
                                                                                  \mathbf{p}_3 = (-2, 1)
            C = C \cup \{\mathbf{p}_i\}
           y = MNP(aff(C))
           while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                       z = argmin ||z - y||_2
                              z \in conv(C) \cap \overline{xy}
                       C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                           are on different faces of
                          conv(C)
                                                                                   C = \{ \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \}
                       x = z
                       y = MNP(aff(C))
           x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                \mathbf{p}_2 = (3,0)
           \mathbf{p}_i \in \{ \mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2 \}
                                                                                \mathbf{p}_3 = (-2, 1)
           C = C \cup \{\mathbf{p}_i\}
           y = MNP(aff(C))
           while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                      \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                             z \in conv(C) \cap \overline{xy}
                       C = C - \{p_i\} where p_i, z
                          are on different faces of
                          conv(C)
                                                                                C = \{p_2, p_3\}
                      x = z
                      y = MNP(aff(C))
           x = y
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                       \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                       \mathbf{p}_2 = (3,0)
            \mathbf{p}_i \in \{ \mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2 \}
                                                                                       \mathbf{p}_3 = (-2, 1)
            C = C \cup \{\mathbf{p}_i\}
            y = MNP(aff(C))
            while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                        \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                                z \in conv(C) \cap \overline{xy}
                         C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                            are on different faces of
                            conv(C)
                                                                                       C = \{\mathbf{p}_2, \mathbf{p}_3\}
                        x = z
                        y = MNP(aff(C))
            x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                        \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                        \mathbf{p}_2 = (3,0)
            \mathbf{p}_i \in \{ \mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2 \}
                                                                                        \mathbf{p}_3 = (-2, 1)
            C = C \cup \{\mathbf{p}_i\}
            y = MNP(aff(C))
            while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                        \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                                z \in conv(C) \cap \overline{xy}
                         C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                            are on different faces of
                            conv(C)
                                                                                        C = \{\mathbf{p}_2, \mathbf{p}_3\}
                        x = z
                        y = MNP(aff(C))
            x = y
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                 \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                 \mathbf{p}_2 = (3,0)
           \mathbf{p}_i \in {\{\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2\}}
                                                                                 \mathbf{p}_3 = (-2, 1)
           C = C \cup \{\mathbf{p}_i\}
           y = MNP(aff(C))
           while y \notin relint(conv(C))
                       \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                              z \in conv(C) \cap \overline{xy}
                       C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                          are on different faces of
                          conv(C)
                                                                                 C = \{\mathbf{p}_2, \mathbf{p}_3\}
                       x = z
                       y = MNP(aff(C))
           x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                        \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                        \mathbf{p}_2 = (3,0)
            \mathbf{p}_i \in \{ \mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2 \}
                                                                                        \mathbf{p}_3 = (-2, 1)
            C = C \cup \{\mathbf{p}_i\}
            y = MNP(aff(C))
            while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                         \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                                z \in conv(C) \cap \overline{xy}
                         C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                             are on different faces of
                            conv(C)
                                                                                        C = \{\mathbf{p}_2, \mathbf{p}_3\}
                         x = z
                         y = MNP(aff(C))
            x = y
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                       \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                       \mathbf{p}_2 = (3,0)
            \mathbf{p}_i \in \{\mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2\}
                                                                                       \mathbf{p}_3 = (-2, 1)
            C = C \cup \{\mathbf{p}_i\}
            y = MNP(aff(C))
                                                                                                               \mathbf{p}_1
            while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                        \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                                z \in conv(C) \cap \overline{xy}
                         C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                            are on different faces of
                            conv(C)
                                                                                        C = \{\mathbf{p}_2, \mathbf{p}_3\}
                        x = z
                        y = MNP(aff(C))
            x = y
return x
```

```
x \in P = \{p_1, p_2, ..., p_m\}
C = \{x\}
                                                                                        \mathbf{p}_1 = (0, 2)
while x is not MNP(P)
                                                                                        \mathbf{p}_2 = (3,0)
            \mathbf{p}_i \in \{ \mathbf{p} \in P : \mathbf{x}^T \mathbf{p} < \|\mathbf{x}\|_2^2 \}
                                                                                        \mathbf{p}_3 = (-2, 1)
            C = C \cup \{\mathbf{p}_i\}
            y = MNP(aff(C))
            while \mathbf{y} \notin \operatorname{relint}(\operatorname{conv}(C))
                         \mathbf{z} = \operatorname{argmin} \|\mathbf{z} - \mathbf{y}\|_2
                                z \in conv(C) \cap \overline{xy}
                         C = C - \{\mathbf{p}_i\} where \mathbf{p}_i, \mathbf{z}
                             are on different faces of
                            conv(C)
                                                                                        C = \{\mathbf{p}_2, \mathbf{p}_3\}
                         x = z
                         y = MNP(aff(C))
            x = y
```

```
\mathbf{x} = \mathbf{p}_i for some i = 1, 2, ..., m, \lambda = \mathbf{e}_i
C = \{i\}
while \mathbf{x} \neq \mathbf{0} and there exists \mathbf{p}_i with \mathbf{x}^T \mathbf{p}_i < \|\mathbf{x}\|_2^2
                C = C \cup \{i\}
                \alpha = \operatorname{argmin} \|\sum \alpha_i \mathbf{p}_i\|_2, \ \mathbf{y} = \sum \alpha_i \mathbf{p}_i
                          \sum_{i=1}^{\infty} \alpha_i = 1 i \in C
                while \alpha_i \leq 0 for some i = 1, 2, ..., m
                                \theta = \min_{i:\alpha_i \leq 0} \frac{\lambda_i}{\lambda_i - \alpha_i}
                                 z = \theta y + (1 - \theta)x
                                 i \in \{j : \theta \alpha_i + (1 - \theta)\lambda_i = 0\}
                                 C = C - \{i\}
                                 x = z
                                 solve \mathbf{x} = P\lambda for \lambda
                                \alpha = \underset{\sum \alpha_i = 1}{\operatorname{argmin}} \| \sum_{i \in \mathcal{C}} \alpha_i \mathbf{p}_i \|_2, \ \mathbf{y} = \sum_{i \in \mathcal{C}} \alpha_i \mathbf{p}_i
                x = y
```

$$\begin{aligned} \mathbf{x} &= \mathbf{p}_i \text{ for some } i = 1, 2, ..., m, \ \lambda = \mathbf{e}_i \\ C &= \{i\} \\ \text{while } \mathbf{x} \neq \mathbf{0} \text{ and there exists } \mathbf{p}_j \text{ with } \mathbf{x}^T \mathbf{p}_j < \|\mathbf{x}\|_2^2 \\ C &= C \cup \{j\} \\ \alpha &= \underset{\substack{\sum \alpha_i = 1 \\ i \in C}} \alpha_i \mathbf{p}_i \|_2, \ \mathbf{y} = \underset{i \in C}{\sum} \alpha_i \mathbf{p}_i \\ \text{while } \alpha_i \leq 0 \text{ for some } i = 1, 2, ..., m \\ \theta &= \underset{i: \alpha_i \leq 0}{\min} \frac{\lambda_i}{\lambda_i - \alpha_i} \\ \mathbf{z} &= \theta \mathbf{y} + (1 - \theta) \mathbf{x} \\ i \in \{j : \theta \alpha_j + (1 - \theta) \lambda_j = 0\} \\ C &= C - \{i\} \\ \mathbf{x} &= \mathbf{z} \\ \text{solve } \mathbf{x} &= P\lambda \text{ for } \lambda \\ \alpha &= \underset{i \in C}{\arg\min} \|\sum_{i \in C} \alpha_i \mathbf{p}_i \|_2, \ \mathbf{y} = \sum_{i \in C} \alpha_i \mathbf{p}_i \\ \mathbf{x} &= \mathbf{y} \end{aligned}$$

Choice 1: Initial vertex.

$$\begin{aligned} \mathbf{x} &= \mathbf{p}_i \text{ for some } i = 1, 2, ..., m, \ \lambda = \mathbf{e}_i \\ C &= \{i\} \\ \text{while } \mathbf{x} \neq \mathbf{0} \text{ and there exists } \mathbf{p}_j \text{ with } \mathbf{x}^T \mathbf{p}_j < \|\mathbf{x}\|_2^2 \\ C &= C \cup \{j\} \\ \alpha &= \underset{\substack{\sum \alpha_i = 1 \\ i \in C}} \|\sum_{i \in C} \alpha_i \mathbf{p}_i\|_2, \ \mathbf{y} = \underset{i \in C}{\sum} \alpha_i \mathbf{p}_i \\ \text{while } \alpha_i &\leq 0 \text{ for some } i = 1, 2, ..., m \\ \theta &= \underset{i: \alpha_i \leq 0}{\min} \frac{\lambda_i}{\lambda_i - \alpha_i} \\ \mathbf{z} &= \theta \mathbf{y} + (1 - \theta) \mathbf{x} \\ i &\in \{j: \theta \alpha_j + (1 - \theta) \lambda_j = 0\} \\ C &= C - \{i\} \\ \mathbf{x} &= \mathbf{z} \\ \text{solve } \mathbf{x} &= P\lambda \text{ for } \lambda \\ \alpha &= \underset{i \in C}{\arg\min} \|\sum_{i \in C} \alpha_i \mathbf{p}_i\|_2, \ \mathbf{y} &= \underset{i \in C}{\sum} \alpha_i \mathbf{p}_i \\ \mathbf{x} &= \mathbf{y} \end{aligned}$$

Choice 1: Initial vertex.

Choice 2: Adding to corral.

$$\begin{aligned} \mathbf{x} &= \mathbf{p}_i \text{ for some } i = 1, 2, ..., m, \ \lambda = \mathbf{e}_i \\ C &= \{i\} \\ \text{while } \mathbf{x} \neq \mathbf{0} \text{ and there exists } \mathbf{p}_j \text{ with } \mathbf{x}^T \mathbf{p}_j < \|\mathbf{x}\|_2^2 \\ C &= C \cup \{j\} \\ \alpha &= \underset{\substack{\sum \alpha_i = 1 \\ i \in C}} \alpha_i \mathbf{p}_i \|_2, \ \mathbf{y} = \underset{i \in C}{\sum} \alpha_i \mathbf{p}_i \\ \text{while } \alpha_i \leq 0 \text{ for some } i = 1, 2, ..., m \\ \theta &= \underset{i: \alpha_i \leq 0}{\min} \frac{\lambda_i}{\lambda_i - \alpha_i} \\ \mathbf{z} &= \theta \mathbf{y} + (1 - \theta) \mathbf{x} \\ i \in \{j : \theta \alpha_j + (1 - \theta) \lambda_j = 0\} \\ C &= C - \{i\} \\ \mathbf{x} &= \mathbf{z} \\ \text{solve } \mathbf{x} &= P\lambda \text{ for } \lambda \\ \alpha &= \underset{i \in C}{\arg\min} \|\sum_{i \in C} \alpha_i \mathbf{p}_i \|_2, \ \mathbf{y} = \sum_{i \in C} \alpha_i \mathbf{p}_i \\ \mathbf{x} &= \mathbf{y} \end{aligned}$$

Choice 1: Initial vertex.

Choice 2: Adding to corral.

Choice 3: Removing from corral.

Initial: minnorm

Insertion: linopt (select \mathbf{p}_j minimizing $\mathbf{x}^T \mathbf{p}_j$), minnorm

Initial: minnorm

Insertion: linopt (select \mathbf{p}_j minimizing $\mathbf{x}^T \mathbf{p}_j$), minnorm

• insertion rules have different benefits

Initial: minnorm

Insertion: linopt (select \mathbf{p}_j minimizing $\mathbf{x}^T \mathbf{p}_j$), minnorm

• insertion rules have different benefits

• behavior depends on choice of insertion rule

Initial: minnorm

Insertion: linopt (select \mathbf{p}_j minimizing $\mathbf{x}^T \mathbf{p}_j$), minnorm

• insertion rules have different benefits

- behavior depends on choice of insertion rule
- examples in which each insertion rule is better

▷ von Neumann's algorithm for linear programming

▷ von Neumann's algorithm for linear programming

▷ Frank-Wolfe method for convex programming (and variants)

> von Neumann's algorithm for linear programming

▷ Frank-Wolfe method for convex programming (and variants)

> von Neumann's algorithm for linear programming

▷ Frank-Wolfe method for convex programming (and variants)

- ▷ Gilbert's procedure for quadratic programming
 - projection onto simple convex hull

 $\, \triangleright \, \, \mathsf{Hanson\text{-}Lawson} \, \, \mathsf{procedure} \, \, \mathsf{for} \, \, \mathsf{non\text{-}negative} \, \, \mathsf{least\text{-}squares} \, \,$

 $\, \triangleright \, \, \mathsf{Hanson\text{-}Lawson} \, \, \mathsf{procedure} \, \, \mathsf{for} \, \, \mathsf{non\text{-}negative} \, \, \mathsf{least\text{-}squares} \, \,$

▷ Betke's combinatorial relaxation algorithm for linear feasibility

- ▷ Betke's combinatorial relaxation algorithm for linear feasibility
 - combinatorial methods

 $\, \triangleright \, \, \mathsf{Fujishige\text{-}Wolfe} \, \, \mathsf{method} \, \, \mathsf{for} \, \, \mathsf{submodular} \, \, \mathsf{optimization} \, \,$

 $\, \triangleright \, \, \mathsf{Fujishige\text{-}Wolfe} \, \, \mathsf{method} \, \, \mathsf{for} \, \, \mathsf{submodular} \, \, \mathsf{optimization} \, \,$

 $\, \triangleright \, \, \mathsf{B\'{a}r\'{a}ny}\text{-}\mathsf{Onn} \,\, \mathsf{approximation} \,\, \mathsf{method} \,\, \mathsf{for} \,\, \mathsf{colorful} \,\, \mathsf{linear} \,\, \mathsf{programming}$

 $\, \triangleright \, \, \mathsf{Fujishige\text{-}Wolfe} \, \, \mathsf{method} \, \, \mathsf{for} \, \, \mathsf{submodular} \, \, \mathsf{optimization} \, \,$

- $\, \triangleright \, \, \mathsf{B\'{a}r\'{a}ny}\text{-}\mathsf{Onn} \, \, \mathsf{approximation} \, \, \mathsf{method} \, \, \mathsf{for} \, \, \mathsf{colorful} \, \, \mathsf{linear} \, \, \mathsf{programming}$
 - combinatorial problems

• # iterations $\leq \sum_{i=1}^{n+1} i {m \choose i}$ with any rules (Wolfe '74)

• # iterations $\leq \sum_{i=1}^{n+1} i {m \choose i}$ with any rules (Wolfe '74)

• ϵ -approximate solution in $\mathcal{O}(nM^2/\epsilon)$ iterations with linopt insertion rule (Chakrabarty, Jain, Kothari '14)

• # iterations $\leq \sum_{i=1}^{n+1} i {m \choose i}$ with any rules (Wolfe '74)

- ϵ -approximate solution in $\mathcal{O}(nM^2/\epsilon)$ iterations with linopt insertion rule (Chakrabarty, Jain, Kothari '14)
- ϵ -approximate solution in $\mathcal{O}(\rho \log(1/\epsilon))$ iterations with linopt insertion rule (Lacoste-Julien, Jaggi '15)

• # iterations $\leq \sum_{i=1}^{n+1} i {m \choose i}$ with any rules (Wolfe '74)

- ϵ -approximate solution in $\mathcal{O}(nM^2/\epsilon)$ iterations with linopt insertion rule (Chakrabarty, Jain, Kothari '14)
- ϵ -approximate solution in $\mathcal{O}(\rho \log(1/\epsilon))$ iterations with linopt insertion rule (Lacoste-Julien, Jaggi '15)

▷ pseudo-polynomial complexity

Exponential Behavior

Goal: build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

- dimension and number of points grow linearly

- dimension and number of points grow linearly
- number of corrals visited grows exponentially

- dimension and number of points grow linearly
- number of corrals visited grows exponentially

Goal: build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

Recursively Defined Instances

Goal: build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

Recursively Defined Instances

dim: d-2

Instance: P(d-2)

Points: 2d - 5

Goal: build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

Recursively Defined Instances

dim:
$$d-2$$

Instance: $P(d-2)$ $\xrightarrow{+2 \text{ dim}}$
Points: $2d-5$ +4 points

Goal: build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

Recursively Defined Instances

dim: d-2

Instance: P(d-2)

Points: 2d - 5

 $\xrightarrow{+2 \text{ dim}}$

+4 points

dim: d

Instance: P(d)

Points: 2d - 1

Goal: build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

Recursively Defined Instances

Instance:
$$P(d-2)$$

Points:
$$2d - 5$$

$$\xrightarrow{+2 \text{ dim}}$$

dim: d

Instance: P(d)

Points: 2d - 1

$$P(1) := \{1\}$$

Goal: build family of instances on which the number of iterations of Wolfe's method is at least exponential in the dimension and number of points

Recursively Defined Instances

dim:
$$d-2$$

Instance: $P(d-2)$ $+2$ dim
Points: $2d-5$ $+4$ points

dim:
$$d$$

Instance: $P(d)$
Points: $2d - 1$

$$P(1) := \{1\}$$

 $P(3) := \{(1,0,0), \mathbf{p}_3, \mathbf{q}_3, \mathbf{r}_3, \mathbf{s}_3\}$

Exponential Example: dim 3

Exponential Example: dim 3

Exponential Example: dim 3

$$P(d) = \begin{pmatrix} P(d-2) & 0 & 0 \\ \frac{1}{2}\mathbf{o}_{d-2}^* & \frac{m_{d-2}}{4} & M_{d-2} \\ \frac{1}{2}\mathbf{o}_{d-2}^* & \frac{m_{d-2}}{4} & -(M_{d-2}+1) \\ 0 & \frac{m_{d-2}}{4} & M_{d-2}+2 \\ 0 & \frac{m_{d-2}}{4} & -(M_{d-2}+3) \end{pmatrix} \qquad \begin{matrix} \mathbf{o}_{d-2}^* \colon \mathsf{MNP}(P(d-2)) \\ m_{d-2} & \in \mathsf{MN$$

$$\mathbf{p}_{\mathbf{d-2}}^*$$
: MNP($P(d-2)$)
 $\mathbf{p}_{\mathbf{d-2}}^* \le \|\mathbf{p}_{\mathbf{d-2}}^*\|_{\infty}$

$$P(d) = \begin{pmatrix} P(d-2) & 0 & 0 \\ \frac{1}{2}\mathbf{o}_{d-2}^* & \frac{m_{d-2}}{4} & M_{d-2} \\ \frac{1}{2}\mathbf{o}_{d-2}^* & \frac{m_{d-2}}{4} & -(M_{d-2}+1) \\ 0 & \frac{m_{d-2}}{4} & M_{d-2}+2 \\ 0 & \frac{m_{d-2}}{4} & -(M_{d-2}+3) \end{pmatrix} \qquad \begin{matrix} \mathbf{o}_{d-2}^* \colon \mathsf{MNP}(P(d-2)) \\ \| \cdot \| & m_{d-2} \le \| \mathbf{o}_{d-2}^* \|_{\infty} \\ M_{d-2} \ge \max_{\mathbf{p} \in P(d-2)} \| \mathbf{p} \|_1 \\ \end{matrix}$$

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d=2k-1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d=2k-1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d=2k-1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

$$C(d - 2)$$

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d=2k-1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

$$C(d-2)$$

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d=2k-1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d=2k-1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Sequence of Corrals: dim 1 \rightarrow dim 3

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d=2k-1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Sequence of Corrals: dim 1 \rightarrow dim 3

1

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d=2k-1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Sequence of Corrals: dim 1 \rightarrow dim 3

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion rule on input P(d) where d=2k-1. Then the sequence of corrals, C(d) has length $5 \cdot 2^{k-1} - 4$.

Sequence of Corrals: dim 1 \rightarrow dim 3

Three Lemmas

▷ a corral with a point made from MNP and orthogonal directions is still a corral

Three Lemmas

- ▷ a corral with a point made from MNP and orthogonal directions is still a corral
- the union of orthogonal corrals is still a corral

Three Lemmas

- ▷ a corral with a point made from MNP and orthogonal directions is still a corral
- > the union of
 orthogonal corrals is
 still a corral
- > adding orthogonal
 points to the corral
 doesn't create any
 available points

Sketch of Proof of Sequence C(d): C(d-2)

$$P(d) = \begin{pmatrix} P(d-2) & 0 & 0 \\ \frac{1}{2} \mathbf{o}_{\mathbf{d}-2}^* & \frac{m_{d-2}}{4} & M_{d-2} \\ \frac{1}{2} \mathbf{o}_{\mathbf{d}-2}^* & \frac{m_{d-2}}{4} & -(M_{d-2}+1) \\ 0 & \frac{m_{d-2}}{4} & M_{d-2}+2 \\ 0 & \frac{m_{d-2}}{4} & -(M_{d-2}+3) \end{pmatrix} \qquad \begin{matrix} \mathbf{o}_{\mathbf{d}-2}^* \colon \mathsf{MNP}(P(d-2)) \\ m_{d-2} \le \|\mathbf{o}_{\mathbf{d}-2}^*\|_{\infty} \\ M_{d-2} \ge \max_{\mathbf{p} \in P(d-2)} \|\mathbf{p}\|_1 \\ \end{pmatrix}$$

$$egin{aligned} \mathbf{o}^*_{\mathbf{d-2}} \colon \mathsf{MNP}(P(d-2)) \ m_{d-2} &\leq \|\mathbf{o}^*_{\mathbf{d-2}}\|_{\infty} \ M_{d-2} &\geq \mathsf{max}_{\mathbf{p} \in P(d-2)} \|\mathbf{p}\|_1 \end{aligned}$$

Sketch of Proof of Sequence C(d): C(d-2)

$$P(d) = \begin{pmatrix} P(d-2) & 0 & 0 \\ \frac{1}{2} \mathbf{o}_{d-2}^* & \frac{m_{d-2}}{4} & M_{d-2} \\ \frac{1}{2} \mathbf{o}_{d-2}^* & \frac{m_{d-2}}{4} & -(M_{d-2}+1) \\ 0 & \frac{m_{d-2}}{4} & M_{d-2}+2 \\ 0 & \frac{m_{d-2}}{4} & -(M_{d-2}+3) \end{pmatrix} \qquad \begin{matrix} \mathbf{o}_{d-2}^* \colon \mathsf{MNP}(P(d-2)) \\ \| \cdot \| & m_{d-2} \le \| \mathbf{o}_{d-2}^* \|_{\infty} \\ M_{d-2} \ge \max_{\mathbf{p} \in P(d-2)} \| \mathbf{p} \|_1 \end{pmatrix}$$

Sketch of Proof of Sequence C(d): $O(d-2)p_d$

Sketch of Proof of Sequence C(d): $O(d-2)\mathbf{p_d}$

a corral with a point made from MNP and orthogonal directions is still a corral

Sketch of Proof of Sequence C(d): p_dq_d

Sketch of Proof of Sequence C(d): p_dq_d

Sketch of Proof of Sequence C(d): $q_d r_d$

Sketch of Proof of Sequence C(d): $q_d r_d$

Sketch of Proof of Sequence C(d): $r_d s_d$

Sketch of Proof of Sequence C(d): r_ds_d

Sketch of Proof of Sequence C(d): $C(d-2)r_ds_d$

- the union of orthogonal corrals is still a corral
- adding orthogonal points to the corral doesn't create any available points

Conclusions

1. Find an exponential example for Wolfe's method with linopt insertion rule.

- 1. Find an exponential example for Wolfe's method with linopt insertion rule.
- 2. Search for types of polytopes where Wolfe's method is polynomial (e.g. base polytopes).

- 1. Find an exponential example for Wolfe's method with linopt insertion rule.
- 2. Search for types of polytopes where Wolfe's method is polynomial (e.g. base polytopes).
- 3. Understand the structure of polytopes formed by reduction of linear programs.

- 1. Find an exponential example for Wolfe's method with linopt insertion rule.
- 2. Search for types of polytopes where Wolfe's method is polynomial (e.g. base polytopes).
- 3. Understand the structure of polytopes formed by reduction of linear programs.
- 4. Give an average (or smoothed) analysis of Wolfe's method.

Thanks for attending!

Questions?

- I. Bárány and S. Onn.
 Colourful linear programming and its relatives.
 Mathematics of Operations Research, 22(3):550–567, 1997.
- [2] D. Chakrabarty, P. Jain, and P. Kothari. Provable submodular minimization using wolfe's algorithm. CoRR, abs/1411.0095, 2014.
- [3] J. A. De Loera, J. Haddock, and L. Rademacher. The minimum Euclidean-norm point on a convex polytope: Wolfes combinatorial algorithm is exponential. 2017.
- [4] S. Fujishige, T. Hayashi, and S. Isotani.
 The minimum-norm-point algorithm applied to submodular function minimization and linear programming.
 Citeseer, 2006.

Example: minnorm < linopt

$$P = \text{conv}\{(0.8, 0.9, 0), (1.5, -0.5, 0), (-1, -1, 2), (-4, 1.5, 2)\} \subset \mathbb{R}^3$$

Example: minnorm < linopt</pre>

Major Cycle	Minor Cycle	С
0	0	{p ₁ }
1	0	$\{p_1, p_2\}$
2	0	$\{p_1, p_2, p_3\}$
3	0	$\{p_1, p_2, p_3, p_4\}$
3	1	$\{p_1, p_2, p_4\}$

Major Cycle	Minor Cycle	С
0	0	{p ₁ }
1	0	$\{p_1,p_4\}$
2	0	$\{p_1, p_4, p_3\}$
2	1	$\{p_1, p_3\}$
3	0	$\{p_1, p_3, p_2\}$
4	0	$\{{\sf p}_1,{\sf p}_2,{\sf p}_3,{\sf p}_4\}$
4	1	$\{p_1, p_2, p_4\}$

Example: minnorm < linopt</pre>

Minor Cycle	С
0	{p ₁ }
0	$\{p_1, p_2\}$
0	$\{p_1, p_2, p_3\}$
0	$\{{\sf p}_1,{\sf p}_2,{\sf p}_3,{\sf p}_4\}$
1	$\{{\sf p}_1,{\sf p}_2,{\sf p}_4\}$
	0 0 0

 $exttt{minnorm} < exttt{linopt} \; \left\{
ight.$

С	Minor Cycle	Major Cycle
{p ₁ }	0	0
$\{p_1, p_4\}$	0	1
$\{p_1, p_4, p_3\}$	0	2
$\{p_1, p_3\}$	1	2
$\{{\sf p}_1,{\sf p}_3,{\sf p}_2\}$	0	3
$\{p_1, p_2, p_3, p_4\}$	0	4
$\{p_1, p_2, p_4\}$	1	4